Scene graphs represent the key components of a scene in a compact and semantically rich way, but are difficult to build during incremental SLAM operation because of the challenges of robustly identifying abstract scene elements and optimising continually changing, complex graphs. We present a distributed, graph-based SLAM framework for incrementally building scene graphs based on two novel components. First, we propose an incremental abstraction framework in which a neural network proposes abstract scene elements that are incorporated into the factor graph of a feature-based monocular SLAM system. Scene elements are confirmed or rejected through optimisation and incrementally replace the points yielding a more dense, semantic and compact representation. Second, enabled by our novel routing procedure, we use Gaussian Belief Propagation (GBP) for distributed inference on a graph processor. The time per iteration of GBP is structure-agnostic and we demonstrate the speed advantages over direct methods for inference of heterogeneous factor graphs. We run our system on real indoor datasets using planar abstractions and recover the major planes with significant compression.
翻译:光谱图以精密和精密的方式代表了场景的关键组成部分,但在递增的 SLAM 行动中很难建立,因为要强有力地识别抽象的场景要素和优化不断变化的复杂图表,我们提出了一个分布式、基于图形的SLM 框架,用于根据两个新组成部分逐步构建场景图。首先,我们提议了一个渐进式抽象框架,在这个框架中,神经网络将抽象的场景要素纳入基于地貌的单眼SLAM 系统要素图中。通过优化和逐步取代产生更稠密、语义和紧凑代表的点,证实或否定了场景要素。第二,我们利用我们新颖的路线程序,利用Gausian信仰促进(GBP)在图形处理器上进行分布的推论。GB的推论时间是结构分辨,我们展示了直接推断混成因子图形的方法的速度优势。我们利用平板抽象的抽象图在真正的室内数据站上运行我们的系统,用重要的压缩法回收主要平面。