Vehicle platooning is a cooperative driving technology that can be supported by 5G enhanced Vehicle-to-Everything (eV2X) communication to improve road safety, traffic efficiency, and reduce fuel consumption. eV2X communication among the platoon vehicles involves the periodic exchange of Cooperative Awareness Messages (CAMs) containing vehicle information under strict latency and reliability requirements. These requirements can be maintained by administering the assignment of resources, in terms of time slots and frequency bands, for CAM exchanges in a platoon, with the help of a resource allocation mechanism. State-of-the-art on control and communication design for vehicle platoons either consider a simplified platoon model with a detailed communication architecture or consider a simplified communication delay model with a detailed platoon control system. Departing from existing works, we have developed a comprehensive vehicle platoon communication and control framework using OMNET++, the benchmarking network simulation tool. We have carried out an inclusive and comparative study of three different platoon Information Flow Topologies (IFTs), namely Car-to-Server, Multi-Hop, and One-Hop over 5G using the Predecessor-leader following platoon control law to arrive at the best-suited IFT for platooning. Secondly, for the best-suited 5G eV2X platooning IFT selected, we have analyzed the performance of three different resource allocation algorithms, namely Maximum of Carrier to Interference Ratio (MaxC/I), Proportional Fair (PF), and Deficit Round Robin (DRR). Exhaustive system-level simulations show that the One-Hop information flow strategy along with the MaxC/I resource allocation yields the best Quality of Service (QoS) performance, in terms of latency, reliability, Age of Information (AoI), and throughput.


翻译:暂无翻译

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员