Neural language models trained with a predictive or masked objective have proven successful at capturing short and long distance syntactic dependencies. Here, we focus on verb argument structure in German, which has the interesting property that verb arguments may appear in a relatively free order in subordinate clauses. Therefore, checking that the verb argument structure is correct cannot be done in a strictly sequential fashion, but rather requires to keep track of the arguments' cases irrespective of their orders. We introduce a new probing methodology based on minimal variation sets and show that both Transformers and LSTM achieve a score substantially better than chance on this test. As humans, they also show graded judgments preferring canonical word orders and plausible case assignments. However, we also found unexpected discrepancies in the strength of these effects, the LSTMs having difficulties rejecting ungrammatical sentences containing frequent argument structure types (double nominatives), and the Transformers tending to overgeneralize, accepting some infrequent word orders or implausible sentences that humans barely accept.


翻译:受过预测性或蒙面性目标培训的神经语言模型在捕捉短距离和长距离合成依赖性方面证明是成功的。 在这里, 我们侧重于德语动词参数结构, 其有趣的属性是动词参数在从属条款中可以以相对自由的顺序出现。 因此, 检查动词参数结构是否正确, 不能严格按顺序进行, 而是要求跟踪争论案例, 而不管其命令如何。 我们引入了基于最小变异组合的新的测试方法, 并显示变换器和LSTM在这项测试中得分大大高于概率。 作为人类, 它们也显示分级判断倾向于卡通字命令和可信的案件分配。 然而, 我们还发现这些效果的强度有出乎意料的差异, LSTMs 难以拒绝含有频繁的参数结构类型( 倍记号) 的非语句, 变换器倾向于过于笼统化, 接受一些不常见的单词或不可信的判决, 而人类几乎不能接受。

0
下载
关闭预览

相关内容

神经语言模型(Neural Language Model,NLM)是一类用来克服维数灾难的语言模型,它使用词的分布式表示对自然语言序列建模。不同于基于类的n-gram模型,神经语言模型在能够识别两个相似的词,并且不丧失将每个词编码为彼此不同的能力。神经语言模型共享一个词(及其上下文)和其他类似词。
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
29+阅读 · 2020年4月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
176+阅读 · 2020年2月1日
【论文】结构GANs,Structured GANs,
专知会员服务
14+阅读 · 2020年1月16日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Simple Recurrent Unit For Sentence Classification
哈工大SCIR
6+阅读 · 2017年11月29日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
自然语言处理 (三) 之 word embedding
DeepLearning中文论坛
19+阅读 · 2015年8月3日
Arxiv
0+阅读 · 2021年4月24日
Arxiv
19+阅读 · 2018年10月25日
Relational recurrent neural networks
Arxiv
8+阅读 · 2018年6月28日
Arxiv
5+阅读 · 2018年2月26日
Arxiv
5+阅读 · 2017年9月8日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Simple Recurrent Unit For Sentence Classification
哈工大SCIR
6+阅读 · 2017年11月29日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
自然语言处理 (三) 之 word embedding
DeepLearning中文论坛
19+阅读 · 2015年8月3日
Top
微信扫码咨询专知VIP会员