Federated learning (FL), with the growing IoT and edge computing, is seen as a promising solution for applications that are latency- and privacy-aware. However, due to the widespread dispersion of data across many clients, it is challenging to monitor client anomalies caused by malfunctioning devices or unexpected events. The majority of FL solutions now in use concentrate on the classification problem, ignoring situations in which anomaly detection may also necessitate privacy preservation and effectiveness. The system in federated learning is unable to manage the potentially flawed behavior of its clients completely. These behaviors include sharing arbitrary parameter values and causing a delay in convergence since clients are chosen at random without knowing the malfunctioning behavior of the client. Client selection is crucial in terms of the efficiency of the federated learning framework. The challenges such as client drift and handling slow clients with low computational capability are well-studied in FL. However, the detection of anomalous clients either for security or for overall performance in the FL frameworks is hardly studied in the literature. In this paper, we propose an anomaly client detection algorithm to overcome malicious client attacks and client drift in FL frameworks. Instead of random client selection, our proposed method utilizes anomaly client detection to remove clients from the FL framework, thereby enhancing the security and efficiency of the overall system. This proposed method improves the global model convergence in almost 50\% fewer communication rounds compared with widely used random client selection using the MNIST dataset.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Localizing Memorization in SSL Vision Encoders
Arxiv
1+阅读 · 2024年12月12日
Arxiv
10+阅读 · 2021年2月26日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Localizing Memorization in SSL Vision Encoders
Arxiv
1+阅读 · 2024年12月12日
Arxiv
10+阅读 · 2021年2月26日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员