Many methods have been proposed over the years to tackle the task of facial 3D geometry and texture recovery from a single image. Such methods often fail to provide high-fidelity texture without relying on 3D facial scans during training. In contrast, the complementary task of 3D facial generation has not received as much attention. As opposed to the 2D texture domain, where GANs have proven to produce highly realistic facial images, the more challenging 3D geometry domain has not yet caught up to the same levels of realism and diversity. In this paper, we propose a novel unified pipeline for both tasks, generation of both geometry and texture, and recovery of high-fidelity texture. Our texture model is learned, in an unsupervised fashion, from natural images as opposed to scanned texture maps. To the best of our knowledge, this is the first such unified framework independent of scanned textures. Our novel training pipeline incorporates a pre-trained 2D facial generator coupled with a deep feature manipulation methodology. By applying precise 3DMM fitting, we can seamlessly integrate our modeled textures into synthetically generated background images forming a realistic composition of our textured model with background, hair, teeth, and body. This enables us to apply transfer learning from the domain of 2D image generation, thus, benefiting greatly from the impressive results obtained in this domain. We provide a comprehensive study on several recent methods comparing our model in generation and reconstruction tasks. As the extensive qualitative, as well as quantitative analysis, demonstrate, we achieve state-of-the-art results for both tasks.


翻译:多年来,人们提出了许多方法来解决面部 3D 几何学和从单一图像恢复质谱的任务。 这种方法往往无法提供高纤维质谱, 而在培训期间没有依靠 3D 面部扫描。 相反, 3D 面部生成的互补任务没有受到同等重视。 相对于 2D 质谱域, GAN 已证明可以产生高度现实的面部图像, 更具挑战性的 3D 几何学域尚未赶上与现实和多样性水平相同的水平。 在本文中, 我们建议为这两个任务提供一个全新的统一管道, 既要生成几何体和质谱,又要恢复高纤维质谱质素。 我们的质谱模型模型从不受监督的方式, 要从自然图像到扫描质谱图图图地图, 与2D 相比, 这是第一个如此统一的框架, 扫描质谱纹图。 我们的新培训管道包含一个经过预先训练的 2D 型面部面部仪表, 以及一个深度的操作方法。 通过应用精确的 3DMM, 我们可以将我们模型和高纤维质谱化的管道混为一体的管道, 融入了 我们的模型的模型的模型的模型模型模型, 以合成的模型化的模型化的模型化背景图象化的模型化的模型化的模型化的模型, 成为了 我们的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型,, 的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型,, 的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型, 的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型

0
下载
关闭预览

相关内容

【论文推荐】文本摘要简述
专知会员服务
68+阅读 · 2020年7月20日
【论文】结构GANs,Structured GANs,
专知会员服务
14+阅读 · 2020年1月16日
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
FIGR: Few-shot Image Generation with Reptile
Arxiv
5+阅读 · 2019年1月8日
Arxiv
7+阅读 · 2018年1月21日
VIP会员
相关VIP内容
【论文推荐】文本摘要简述
专知会员服务
68+阅读 · 2020年7月20日
【论文】结构GANs,Structured GANs,
专知会员服务
14+阅读 · 2020年1月16日
相关资讯
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员