There is a niche of companies responsible for intermediating the purchase of large batches of varied products for other companies, for which the main challenge is to perform product description standardization, i.e., matching an item described by a client with a product described in a catalog. The problem is complex since the client's product description may be: (1) potentially noisy; (2) short and uninformative (e.g., missing information about model and size); and (3) cross-language. In this paper, we formalize this problem as a ranking task: given an initial client product specification (query), return the most appropriate standardized descriptions (response). In this paper, we propose TPDR, a two-step Transformer-based Product and Class Description Retrieval method that is able to explore the semantic correspondence between IS and SD, by exploiting attention mechanisms and contrastive learning. First, TPDR employs the transformers as two encoders sharing the embedding vector space: one for encoding the IS and another for the SD, in which corresponding pairs (IS, SD) must be close in the vector space. Closeness is further enforced by a contrastive learning mechanism leveraging a specialized loss function. TPDR also exploits a (second) re-ranking step based on syntactic features that are very important for the exact matching (model, dimension) of certain products that may have been neglected by the transformers. To evaluate our proposal, we consider 11 datasets from a real company, covering different application contexts. Our solution was able to retrieve the correct standardized product before the 5th ranking position in 71% of the cases and its correct category in the first position in 80% of the situations. Moreover, the effectiveness gains over purely syntactic or semantic baselines reach up to 3.7 times, solving cases that none of the approaches in isolation can do by themselves.


翻译:暂无翻译

0
下载
关闭预览

相关内容

CASES:International Conference on Compilers, Architectures, and Synthesis for Embedded Systems。 Explanation:嵌入式系统编译器、体系结构和综合国际会议。 Publisher:ACM。 SIT: http://dblp.uni-trier.de/db/conf/cases/index.html
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员