Sensing technologies deployed in the workplace can collect detailed data about individual activities and group interactions that are otherwise difficult to capture. A hopeful application of these technologies is that they can help businesses and workers optimize productivity and wellbeing. However, given the inherent and structural power dynamics in the workplace, the prevalent approach of accepting tacit compliance to monitor work activities rather than seeking workers' meaningful consent raises privacy and ethical concerns. This paper unpacks a range of challenges that workers face when consenting to workplace wellbeing technologies. Using a hypothetical case to prompt reflection among six multi-stakeholder focus groups involving 15 participants, we explored participants' expectations and capacity to consent to workplace sensing technologies. We sketched possible interventions that could better support more meaningful consent to workplace wellbeing technologies by drawing on critical computing and feminist scholarship -- which reframes consent from a purely individual choice to a structural condition experienced at the individual level that needs to be freely given, reversible, informed, enthusiastic, and specific (FRIES). The focus groups revealed that workers are vulnerable to meaningless consent -- dynamics that undo the value of data gathered in the name of "wellbeing," as well as an erosion of autonomy in the workplace. To meaningfully consent, participants wanted changes to how the technology works and is being used, as well as to the policies and practices surrounding the technology. Our mapping of what prevents workers from meaningfully consenting to workplace wellbeing technologies (challenges) and what they require to do so (interventions) underscores that the lack of meaningful consent is a structural problem requiring socio-technical solutions.


翻译:在工作场所部署的遥感技术可以收集关于个别活动和群体互动的详细数据,否则难以捕捉到。这些技术的希望应用是它们能够帮助企业和工人优化生产力和福利。然而,鉴于工作场所固有的和结构性的权力动态,接受默认遵守以监测工作活动而不是寻求工人的有意义同意这一普遍做法会增加隐私和伦理问题。本文揭示了工人在同意工作场所福利技术时所面临的一系列挑战。我们利用一个假设案例,促使6个多方利益攸关者焦点小组(有15人参加)进行反思,我们探讨了参与者对工作场所遥感技术的预期和能力。我们勾画了可能采取的干预措施,这些干预措施可以通过利用关键的计算和女权主义奖学金更好地支持更有意义地同意工作场所福利技术。这些奖学金将同意从纯粹的个人选择转变为个人层面经历的结构性条件,而这种同意需要自由给予、可逆、知情、热情和具体的(FRIIES)。重点小组揭示了工人容易受到毫无意义同意的伤害,这种同意取代了以“福祉”的名义收集的数据的价值,以及工作场所自主权的侵蚀。为了有意义地同意,与会者希望改变我们的工作场所的技术做法,要求人们如何使用这种同意和缺乏。</s>

0
下载
关闭预览

相关内容

Group一直是研究计算机支持的合作工作、人机交互、计算机支持的协作学习和社会技术研究的主要场所。该会议将社会科学、计算机科学、工程、设计、价值观以及其他与小组工作相关的多个不同主题的工作结合起来,并进行了广泛的概念化。官网链接:https://group.acm.org/conferences/group20/
专知会员服务
17+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月2日
Arxiv
0+阅读 · 2023年4月28日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员