Bayesian Generative AI (BayesGen-AI) methods are developed and applied to Bayesian computation. BayesGen-AI reconstructs the posterior distribution by directly modeling the parameter of interest as a mapping (a.k.a. deep learner) from a large simulated dataset. This provides a generator that we can evaluate at the observed data and provide draws from the posterior distribution. This method applies to all forms of Bayesian inference including parametric models, likelihood-free models, prediction and maximum expected utility problems. Bayesian computation is then equivalent to high dimensional non-parametric regression. Bayes Gen-AI main advantage is that it is density-free and therefore provides an alternative to Markov Chain Monte Carlo. It has a number of advantages over vanilla generative adversarial networks (GAN) and approximate Bayesian computation (ABC) methods due to the fact that the generator is simpler to learn than a GAN architecture and is more flexible than kernel smoothing implicit in ABC methods. Design of the Network Architecture requires careful selection of features (a.k.a. dimension reduction) and nonlinear architecture for inference. As a generic architecture, we propose a deep quantile neural network and a uniform base distribution at which to evaluate the generator. To illustrate our methodology, we provide two real data examples, the first in traffic flow prediction and the second in building a surrogate for satellite drag data-set. Finally, we conclude with directions for future research.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
76+阅读 · 2022年3月26日
Principal Neighbourhood Aggregation for Graph Nets
Arxiv
17+阅读 · 2020年6月7日
Arxiv
12+阅读 · 2019年2月26日
Arxiv
12+阅读 · 2018年9月15日
Arxiv
10+阅读 · 2018年4月19日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
76+阅读 · 2022年3月26日
Principal Neighbourhood Aggregation for Graph Nets
Arxiv
17+阅读 · 2020年6月7日
Arxiv
12+阅读 · 2019年2月26日
Arxiv
12+阅读 · 2018年9月15日
Arxiv
10+阅读 · 2018年4月19日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员