Quantum computing is evolving so rapidly that it forces us to revisit, rewrite, and update the foundations of the theory. Basic Quantum Algorithms revisits the earliest quantum algorithms. The journey began in 1985 with Deutsch attempting to evaluate a function at two domain points simultaneously. Then, in 1992, Deutsch and Jozsa created a quantum algorithm that determines whether a Boolean function is constant or balanced. The following year, Bernstein and Vazirani realized that the same algorithm could be used to identify a specific Boolean function within a set of linear Boolean functions. In 1994, Simon introduced a novel quantum algorithm that determined whether a function was one-to-one or two-to-one exponentially faster than any classical algorithm for the same problem. That same year, Shor developed two groundbreaking quantum algorithms for integer factoring and calculating discrete logarithms, posing a threat to the widely used cryptography methods. In 1995, Kitaev proposed an alternative version of Shor's algorithms that proved valuable in numerous other applications. The following year, Grover devised a quantum search algorithm that was quadratically faster than its classical equivalent. With an emphasis on the circuit model, this work provides a detailed description of all these remarkable algorithms.
翻译:量子计算正以前所未有的速度发展,这促使我们重新审视、重写并更新该理论的基础。《基础量子算法》回顾了最早的量子算法。这一旅程始于1985年,Deutsch尝试同时计算函数在两个定义域点的值。随后在1992年,Deutsch和Jozsa创建了一种量子算法,用于判定布尔函数是常函数还是平衡函数。次年,Bernstein和Vazirani发现同一算法可用于在线性布尔函数集合中识别特定布尔函数。1994年,Simon提出了一种新颖的量子算法,能以指数级优势(相比解决同一问题的任何经典算法)判定函数是一对一还是二对一映射。同年,Shor针对整数分解和离散对数计算提出了两种突破性的量子算法,对广泛使用的密码学方法构成了威胁。1995年,Kitaev提出了Shor算法的改进版本,该版本在众多其他应用中展现出重要价值。次年,Grover设计出比经典等效算法具有二次加速优势的量子搜索算法。本研究着重基于电路模型,对这些卓越算法进行了详细阐述。