Quantum computing is evolving so rapidly that it forces us to revisit, rewrite, and update the foundations of the theory. Basic Quantum Algorithms revisits the earliest quantum algorithms. The journey began in 1985 with Deutsch attempting to evaluate a function at two domain points simultaneously. Then, in 1992, Deutsch and Jozsa created a quantum algorithm that determines whether a Boolean function is constant or balanced. The following year, Bernstein and Vazirani realized that the same algorithm could be used to identify a specific Boolean function within a set of linear Boolean functions. In 1994, Simon introduced a novel quantum algorithm that determined whether a function was one-to-one or two-to-one exponentially faster than any classical algorithm for the same problem. That same year, Shor developed two groundbreaking quantum algorithms for integer factoring and calculating discrete logarithms, posing a threat to the widely used cryptography methods. In 1995, Kitaev proposed an alternative version of Shor's algorithms that proved valuable in numerous other applications. The following year, Grover devised a quantum search algorithm that was quadratically faster than its classical equivalent. With an emphasis on the circuit model, this work provides a detailed description of all these remarkable algorithms.


翻译:量子计算正以前所未有的速度发展,这促使我们重新审视、重写并更新该理论的基础。《基础量子算法》回顾了最早的量子算法。这一旅程始于1985年,Deutsch尝试同时计算函数在两个定义域点的值。随后在1992年,Deutsch和Jozsa创建了一种量子算法,用于判定布尔函数是常函数还是平衡函数。次年,Bernstein和Vazirani发现同一算法可用于在线性布尔函数集合中识别特定布尔函数。1994年,Simon提出了一种新颖的量子算法,能以指数级优势(相比解决同一问题的任何经典算法)判定函数是一对一还是二对一映射。同年,Shor针对整数分解和离散对数计算提出了两种突破性的量子算法,对广泛使用的密码学方法构成了威胁。1995年,Kitaev提出了Shor算法的改进版本,该版本在众多其他应用中展现出重要价值。次年,Grover设计出比经典等效算法具有二次加速优势的量子搜索算法。本研究着重基于电路模型,对这些卓越算法进行了详细阐述。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
14+阅读 · 2020年9月1日
Arxiv
12+阅读 · 2019年2月26日
Arxiv
11+阅读 · 2018年3月23日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
14+阅读 · 2020年9月1日
Arxiv
12+阅读 · 2019年2月26日
Arxiv
11+阅读 · 2018年3月23日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员