Swarm robotics has potential for a wide variety of applications, but real-world deployments remain rare due to the difficulty of predicting emergent behaviors arising from simple local interactions. Traditional engineering approaches design controllers to achieve desired macroscopic outcomes under idealized conditions, while agent-based and artificial life studies explore emergent phenomena in a bottom-up, exploratory manner. In this work, we introduce Analytical Swarm Chemistry, a framework that integrates concepts from engineering, agent-based and artificial life research, and chemistry. This framework combines macrostate definitions with phase diagram analysis to systematically explore how swarm parameters influence emergent behavior. Inspired by concepts from chemistry, the framework treats parameters like thermodynamic variables, enabling visualization of regions in parameter space that give rise to specific behaviors. Applying this framework to agents with minimally viable capabilities, we identify sufficient conditions for behaviors such as milling and diffusion and uncover regions of the parameter space that reliably produce these behaviors. Preliminary validation on real robots demonstrates that these regions correspond to observable behaviors in practice. By providing a principled, interpretable approach, this framework lays the groundwork for predictable and reliable emergent behavior in real-world swarm systems.
翻译:群体机器人学具有广泛的应用潜力,但由于难以预测由简单局部交互产生的涌现行为,其在现实世界中的部署仍然罕见。传统工程方法设计控制器以在理想化条件下实现期望的宏观结果,而基于智能体和人工生命的研究则以自下而上的探索方式研究涌现现象。本文提出解析式群体化学框架,该框架整合了工程学、基于智能体与人工生命研究以及化学领域的概念。该框架将宏观状态定义与相图分析相结合,系统性地探索群体参数如何影响涌现行为。受化学概念的启发,该框架将参数视为热力学变量,从而能够可视化参数空间中产生特定行为的区域。将此框架应用于具备最小可行能力的智能体,我们识别了产生涡旋运动和扩散等行为的充分条件,并揭示了参数空间中可靠产生这些行为的区域。在真实机器人上的初步验证表明,这些区域在实践中对应着可观测的行为。通过提供一种原则性、可解释的方法,该框架为现实世界群体系统中可预测且可靠的涌现行为奠定了基础。