Implicit Neural Representations (INRs) have recently exhibited immense potential in the field of scientific visualization for both data generation and visualization tasks. However, these representations often consist of large multi-layer perceptrons (MLPs), necessitating millions of operations for a single forward pass, consequently hindering interactive visual exploration. While reducing the size of the MLPs and employing efficient parametric encoding schemes can alleviate this issue, it compromises generalizability for unseen parameters, rendering it unsuitable for tasks such as temporal super-resolution. In this paper, we introduce HyperINR, a novel hypernetwork architecture capable of directly predicting the weights for a compact INR. By harnessing an ensemble of multiresolution hash encoding units in unison, the resulting INR attains state-of-the-art inference performance (up to 100x higher inference bandwidth) and can support interactive photo-realistic volume visualization. Additionally, by incorporating knowledge distillation, exceptional data and visualization generation quality is achieved, making our method valuable for real-time parameter exploration. We validate the effectiveness of the HyperINR architecture through a comprehensive ablation study. We showcase the versatility of HyperINR across three distinct scientific domains: novel view synthesis, temporal super-resolution of volume data, and volume rendering with dynamic global shadows. By simultaneously achieving efficiency and generalizability, HyperINR paves the way for applying INR in a wider array of scientific visualization applications.


翻译:最近在科学可视化领域,隐式神经表达已经展现出巨大的潜力,可以用于数据生成和可视化任务。然而,这些表示通常由大型的多层感知器 (MLPs) 组成,对于单个前向传递需要数百万次操作,从而阻碍了交互式视觉探索。虽然减小MLP的规模并采用高效的参数化编码方案可以缓解这个问题,但这会牺牲未知参数的通用性,使其不适合于时间超分辨率等任务。在本文中,我们提出了HyperINR,一种新颖的超网络架构,可以直接预测一个紧凑的INR的权重。通过同时使用一组多分辨率哈希编码单元,所得到的INR具有最先进的推理性能(高达100倍的推理带宽),可以支持交互式的真实感体积可视化。此外,通过结合知识蒸馏,我们实现了优秀的数据和可视化生成质量,使我们的方法在实时参数探索中非常有价值。我们通过全面的剥离研究验证了HyperINR架构的有效性。我们展示了HyperINR在三个不同的科学领域中的多样性:新视角合成、体数据的时间超分辨率和具有动态全局阴影的体绘制。通过同时实现效率和通用性,HyperINR为将INR应用于更广泛的科学可视化应用铺平了道路。

0
下载
关闭预览

相关内容

【伯克利Alvin Wan博士论文】高效设计深度神经网络
专知会员服务
57+阅读 · 2022年5月21日
专知会员服务
20+阅读 · 2021年8月17日
【ICLR 2019】双曲注意力网络,Hyperbolic  Attention Network
专知会员服务
82+阅读 · 2020年6月21日
专知会员服务
53+阅读 · 2019年12月22日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Learning Implicit Fields for Generative Shape Modeling
Arxiv
10+阅读 · 2018年12月6日
VIP会员
相关VIP内容
【伯克利Alvin Wan博士论文】高效设计深度神经网络
专知会员服务
57+阅读 · 2022年5月21日
专知会员服务
20+阅读 · 2021年8月17日
【ICLR 2019】双曲注意力网络,Hyperbolic  Attention Network
专知会员服务
82+阅读 · 2020年6月21日
专知会员服务
53+阅读 · 2019年12月22日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员