We present robust high-performance implementations of signal-processing tasks performed by a high-throughput wildlife tracking system called ATLAS. The system tracks radio transmitters attached to wild animals by estimating the time of arrival of radio packets to multiple receivers (base stations). Time-of-arrival estimation of wideband radio signals is computationally expensive, especially in acquisition mode (when the time of transmission is not known, not even approximately). These computations are a bottleneck that limits the throughput of the system. We developed a sequential high-performance CPU implementation of the computations a few years back, and more recencely a GPU implementation. Both strive to balance performance with simplicity, maintainability, and development effort, as most real-world codes do. The paper reports on the two implementations and carefully evaluates their performance. The evaluations indicates that the GPU implementation dramatically improves performance and power-performance relative to the sequential CPU implementation running on a desktop CPU typical of the computers in current base stations. Performance improves by more than 50X on a high-end GPU and more than 4X with a GPU platform that consumes almost 5 times less power than the CPU platform. Performance-per-Watt ratios also improve (by more than 16X), and so do the price-performance ratios.


翻译:该系统通过估计无线电包运抵多个接收器(基地站)的时间,跟踪附属于野生动物的无线电发报机。宽带无线电信号的抵达时间估计计算成本很高,特别是在获取模式(当传输时间不详,甚至不太接近)方面。这些计算是一个瓶颈,限制了系统的传输量。我们开发了一个连续高性能的CPU,在几年前执行计算,并更准确地执行GPU。两种系统都努力将性能与大多数现实世界代码一样,平衡兼顾无线电包运抵多个接收器(基地站)的时间;宽带无线电信号的抵达时间估计是计算成本高昂的,特别是在获取模式(当传输时间不详,甚至不太接近)时。这些计算是一个瓶颈,它限制了系统的传输量。我们开发了一个连续性能高的CPU,在高端的GPU和4x以上的GPU平台上,其性能水平几乎比CPU要低5倍,其性能比CPU的比例要低16倍。

1
下载
关闭预览

相关内容

专知会员服务
38+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
75+阅读 · 2020年7月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
143+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
IEEE2018|An Accurate and Real-time 3D Tracking System for Robots
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
7+阅读 · 2018年6月19日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
IEEE2018|An Accurate and Real-time 3D Tracking System for Robots
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员