Given two strings of length $n$ over alphabet $\Sigma$, and an upper bound $k$ on their edit distance, the algorithm of Myers (Algorithmica'86) and Landau and Vishkin (JCSS'88) computes the unweighted string edit distance in $\mathcal{O}(n+k^2)$ time. Till date, it remains the fastest algorithm for exact edit distance computation, and it is optimal under the Strong Exponential Hypothesis (STOC'15). Over the years, this result has inspired many developments, including fast approximation algorithms for string edit distance as well as similar $\tilde{\mathcal{O}}(n+$poly$(k))$-time algorithms for generalizations to tree and Dyck edit distances. Surprisingly, all these results hold only for unweighted instances. While unweighted edit distance is theoretically fundamental, almost all real-world applications require weighted edit distance, where different weights are assigned to different edit operations and may vary with the characters being edited. Given a weight function $w: \Sigma \cup \{\varepsilon \}\times \Sigma \cup \{\varepsilon \} \rightarrow \mathbb{R}_{\ge 0}$ (such that $w(a,a)=0$ and $w(a,b)\ge 1$ for all $a,b\in \Sigma \cup \{\varepsilon\}$ with $a\ne b$), the goal is to find an alignment that minimizes the total weight of edits. Except for the vanilla $\mathcal{O}(n^2)$-time dynamic-programming algorithm and its almost trivial $\mathcal{O}(nk)$-time implementation, none of the aforementioned developments on the unweighted edit distance apply to the weighted variant. In this paper, we propose the first $\mathcal{O}(n+$poly$(k))$-time algorithm that computes weighted string edit distance exactly, thus bridging a fundamental gap between our understanding of unweighted and weighted edit distance. We then generalize this result to weighted tree and Dyck edit distances, which lead to a deterministic algorithm that improves upon the previous work for unweighted tree edit distance.


翻译:以两个长度的字符串 $x正方程 $\ sgmax美元, 以及一个在编辑距离上的上限 {squal $, Myers 的算法 (Agorithwica'86) 和 Landau 和 Vishkin (JCSS'88) 计算了未加权字符串编辑距离 $mathcal{O} (n+k2) 。 直到日期, 它仍然是精确编辑距离计算的最快速的算法, 并且根据强度指数( STOC' 15) 它是最理想的。 多年来, 这一结果激发了许多发展, 包括用于编辑距离的快速缩略度算法 以及类似的 $\ talth} (n+$poly美元) 和 Dycock 时间算法 。

0
下载
关闭预览

相关内容

Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
158+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月30日
Arxiv
0+阅读 · 2023年3月29日
Arxiv
0+阅读 · 2023年3月27日
VIP会员
相关VIP内容
相关资讯
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员