The neuroimage analysis community has neglected the automated segmentation of the olfactory bulb (OB) despite its crucial role in olfactory function. The lack of an automatic processing method for the OB can be explained by its challenging properties. Nonetheless, recent advances in MRI acquisition techniques and resolution have allowed raters to generate more reliable manual annotations. Furthermore, the high accuracy of deep learning methods for solving semantic segmentation problems provides us with an option to reliably assess even small structures. In this work, we introduce a novel, fast, and fully automated deep learning pipeline to accurately segment OB tissue on sub-millimeter T2-weighted (T2w) whole-brain MR images. To this end, we designed a three-stage pipeline: (1) Localization of a region containing both OBs using FastSurferCNN, (2) Segmentation of OB tissue within the localized region through four independent AttFastSurferCNN - a novel deep learning architecture with a self-attention mechanism to improve modeling of contextual information, and (3) Ensemble of the predicted label maps. The OB pipeline exhibits high performance in terms of boundary delineation, OB localization, and volume estimation across a wide range of ages in 203 participants of the Rhineland Study. Moreover, it also generalizes to scans of an independent dataset never encountered during training, the Human Connectome Project (HCP), with different acquisition parameters and demographics, evaluated in 30 cases at the native 0.7mm HCP resolution, and the default 0.8mm pipeline resolution. We extensively validated our pipeline not only with respect to segmentation accuracy but also to known OB volume effects, where it can sensitively replicate age effects.


翻译:神经图像分析界忽视了嗅觉泡(OB)的自动分解,尽管它在嗅觉功能中起着关键作用。缺乏对OB的自动处理方法可以解释其具有挑战性的特性。然而,最近MRI获取技术和分辨率的进展使得调试器能够产生更可靠的人工说明。此外,解决语系分解问题的深层次学习方法的高度精确性为我们提供了一个可靠评估甚至小型结构的选择。在这项工作中,我们引入了一个新颖、快速和完全自动化的深层学习管道,以准确标注T2-重量(T2w)的全脑参数MM图像中的离心组织部分。为此,我们设计了一个三阶段的管道:(1) 将含有两个OBs的区域本地化,使用FastSurferN,(2) 通过四个独立的本地语系分解问题,OB组织分解方法为我们提供了一种全新的深层次学习结构,我们只能用一种自我存储机制来改进背景信息的模型,以及(3) 将预测的标签图的离心结构(T2w) 整体调重(T2w) (T) 内精度(T2w) 内精度调调调) 内径Metrobilder MMMMM) 图像。我们设计设计设计设计了一个高分解过程的精度的精度的精度的精度的精度, 的精度的精度的精度,在203的精度的精度的精度的精度的精度的精度的精度分析过程的精度, 和深度的精度的深度分析过程的精确度的深度分析过程的精确度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
已删除
将门创投
6+阅读 · 2019年9月3日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
VIP会员
相关VIP内容
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
6+阅读 · 2019年9月3日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员