This paper describes the principle of "General Cyclical Training" in machine learning, where training starts and ends with "easy training" and the "hard training" happens during the middle epochs. We propose several manifestations for training neural networks, including algorithmic examples (via hyper-parameters and loss functions), data-based examples, and model-based examples. Specifically, we introduce several novel techniques: cyclical weight decay, cyclical batch size, cyclical focal loss, cyclical softmax temperature, cyclical data augmentation, cyclical gradient clipping, and cyclical semi-supervised learning. In addition, we demonstrate that cyclical weight decay, cyclical softmax temperature, and cyclical gradient clipping (as three examples of this principle) are beneficial in the test accuracy performance of a trained model. Furthermore, we discuss model-based examples (such as pretraining and knowledge distillation) from the perspective of general cyclical training and recommend some changes to the typical training methodology. In summary, this paper defines the general cyclical training concept and discusses several specific ways in which this concept can be applied to training neural networks. In the spirit of reproducibility, the code used in our experiments is available at \url{https://github.com/lnsmith54/CFL}.


翻译:本文描述了机器学习中的“常规周期培训”原则,培训以“舒适培训”和“硬性培训”开始和结束于中世纪。我们为培训神经网络提出了几种表现形式,包括算法实例(通过超参数和损失功能)、基于数据的实例和基于模型的实例。具体地说,我们引入了几种新颖技术:周期体重衰减、周期批量规模、周期性焦点损失、周期性软性温度、周期性数据扩增、周期性梯度剪裁和周期性半监督学习。此外,我们证明周期性重量衰减、周期性软性负温度和周期性梯度剪裁(作为这一原则的三个例子)有益于经过培训的模式的测试准确性表现。此外,我们从一般周期培训的角度讨论基于模型的实例(如培训前和知识蒸馏等),并建议对典型培训方法作一些修改。总而言,本文界定了周期性培训概念,并讨论了可用于培训神经网络的若干具体方法。从可追溯性精神出发,我们实验中使用的代码{httpsurmurmission/rmissymission{

0
下载
关闭预览

相关内容

截断,即通过某个阈值来控制系数的大小,若系数小于某个阈值便将该系数设置为0,即简单截断。
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
13+阅读 · 2021年7月20日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
31+阅读 · 2018年11月13日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员