The isomorphism problem is a fundamental problem in network analysis, which involves capturing both low-order and high-order structural information. In terms of extracting low-order structural information, graph isomorphism algorithms analyze the structural equivalence to reduce the solver space dimension, which demonstrates its power in many applications, such as protein design, chemical pathways, and community detection. For the more commonly occurring high-order relationships in real-life scenarios, the problem of hypergraph isomorphism, which effectively captures these high-order structural relationships, cannot be straightforwardly addressed using graph isomorphism methods. Besides, the existing hypergraph kernel methods may suffer from high memory consumption or inaccurate sub-structure identification, thus yielding sub-optimal performance. In this paper, to address the abovementioned problems, we first propose the hypergraph Weisfiler-Lehman test algorithm for the hypergraph isomorphism test problem by generalizing the Weisfiler-Lehman test algorithm from graphs to hypergraphs. Secondly, based on the presented algorithm, we propose a general hypergraph Weisfieler-Lehman kernel framework and implement two instances, which are Hypergraph Weisfeiler-Lehamn Subtree Kernel and Hypergraph Weisfeiler-Lehamn Hyperedge Kernel. In order to fulfill our research objectives, a comprehensive set of experiments was meticulously designed, including seven graph classification datasets and 12 hypergraph classification datasets. Results on hypergraph classification datasets show significant improvements compared to other typical kernel-based methods, which demonstrates the effectiveness of the proposed methods. In our evaluation, we found that our proposed methods outperform the second-best method in terms of runtime, running over 80 times faster when handling complex hypergraph structures.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Quantum Vision Clustering
Arxiv
0+阅读 · 2023年9月18日
Arxiv
0+阅读 · 2023年9月16日
Arxiv
0+阅读 · 2023年9月14日
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Quantum Vision Clustering
Arxiv
0+阅读 · 2023年9月18日
Arxiv
0+阅读 · 2023年9月16日
Arxiv
0+阅读 · 2023年9月14日
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
Arxiv
24+阅读 · 2018年10月24日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员