A fundamental bottleneck in human-AI collaboration is the "intention expression gap," the difficulty for humans to effectively convey complex, high-dimensional thoughts to AI. This challenge often traps users in inefficient trial-and-error loops and is exacerbated by the diverse expertise levels of users. We reframe this problem from passive instruction following to a Socratic collaboration paradigm, proposing an agent that actively probes for information to resolve its uncertainty about user intent. we name the proposed agent Nous, trained to acquire proficiency in this inquiry policy. The core mechanism of Nous is a training framework grounded in the first principles of information theory. Within this framework, we define the information gain from dialogue as an intrinsic reward signal, which is fundamentally equivalent to the reduction of Shannon entropy over a structured task space. This reward design enables us to avoid reliance on costly human preference annotations or external reward models. To validate our framework, we develop an automated simulation pipeline to generate a large-scale, preference-based dataset for the challenging task of scientific diagram generation. Comprehensive experiments, including ablations, subjective and objective evaluations, and tests across user expertise levels, demonstrate the effectiveness of our proposed framework. Nous achieves leading efficiency and output quality, while remaining robust to varying user expertise. Moreover, its design is domain-agnostic, and we show evidence of generalization beyond diagram generation. Experimental results prove that our work offers a principled, scalable, and adaptive paradigm for resolving uncertainty about user intent in complex human-AI collaboration.
翻译:人机协作中的一个根本瓶颈是‘意图表达鸿沟’,即人类难以向AI有效传达复杂的高维思维。这一挑战常使用户陷入低效的试错循环,且因用户专业知识水平的多样性而加剧。我们将此问题从被动的指令遵循重新定义为苏格拉底式协作范式,提出一种主动探查信息以解决其对用户意图不确定性的智能体。我们将该智能体命名为Nous,其训练目标为掌握这种询问策略的熟练度。Nous的核心机制是基于信息论第一性原理的训练框架。在此框架中,我们将对话中的信息增益定义为内在奖励信号,其本质上等价于结构化任务空间上香农熵的减少。这种奖励设计使我们能够避免依赖昂贵的人类偏好标注或外部奖励模型。为验证框架,我们开发了自动化模拟流程,为具有挑战性的科学图表生成任务构建了大规模基于偏好的数据集。综合实验(包括消融研究、主客观评估及跨用户专业水平的测试)证明了所提框架的有效性。Nous在效率和输出质量上均达到领先水平,同时对不同用户专业水平保持鲁棒性。此外,其设计具备领域无关性,我们展示了其在图表生成任务之外的泛化证据。实验结果证实,本研究为复杂人机协作中解决用户意图不确定性提供了一种原则性、可扩展且自适应的范式。