Higher penetration of renewable and smart home technologies at the residential level challenges grid stability as utility-customer interactions add complexity to power system operations. In response, short-term residential load forecasting has become an increasing area of focus. However, forecasting at the residential level is challenging due to the higher uncertainties involved. Recently deep neural networks have been leveraged to address this issue. This paper investigates the capabilities of a bidirectional long short-term memory (BiLSTM) and a convolutional neural network-based BiLSTM (CNN-BiLSTM) to provide a day ahead (24 hr.) forecasting at an hourly resolution while minimizing the root mean squared error (RMSE) between the actual and predicted load demand. Using a publicly available dataset consisting of 38 homes, the BiLSTM and CNN-BiLSTM models are trained to forecast the aggregated active power demand for each hour within a 24 hr. span, given the previous 24 hr. load data. The BiLSTM model achieved the lowest RMSE of 1.4842 for the overall daily forecast. In addition, standard LSTM and CNN-LSTM models are trained and compared with the BiLSTM architecture. The RMSE of BiLSTM is 5.60%, 2.85% and 2.60% lower than the LSTM, CNN-LSTM and CNN-BiLSTM models respectively. The source code of this work is available at https://github.com/Varat7v2/STLF-BiLSTM-CNNBiLSTM.git.


翻译:在住宅一级,可再生能源和智能家用技术的较高渗透程度在住宅一级对电网稳定提出了挑战,因为公用事业用户互动增加了电力系统运行的复杂性。作为回应,短期住宅负荷预测已成为一个日益突出的重点领域。然而,由于所涉及的不确定性较高,在住宅一级的预测具有挑战性。最近,利用了深入的神经网络来解决这一问题。本文件调查了双向长期短期存储(BILSTM)和以BilSTM为基础的神经网络网络(CNN-BilSTM)的能力,以提供每天的预测(24小时),以提供每小时一次的解决方案,同时尽量减少实际和预测负荷需求之间的根平均值平方差(RMSE)。利用由38个家庭、BILSTM和CNNR-BLSTM组成的公开数据集,根据前24小时的负荷数据,预测每小时总电流(BilSTM)和BRISTM的1.4842号模型,总预测达到1.4842的最低RMSE模型。此外,标准LSTM和CNNSTM的平方值差值(2.85)模型在BITM/BITM/BITM的版本结构中分别得到培训,比BILSTM/BILLLSTM的版本为2.85)。

0
下载
关闭预览

相关内容

BiLSTM是Bi-directional Long Short-Term Memory的缩写,是由前向LSTM与后向LSTM组合而成。在自然语言处理任务中都常被用来建模上下文信息。
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
47+阅读 · 2022年10月2日
专知会员服务
41+阅读 · 2020年12月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
基于LSTM-CNN组合模型的Twitter情感分析(附代码)
机器学习研究会
50+阅读 · 2018年2月21日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
35+阅读 · 2021年1月27日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
基于LSTM-CNN组合模型的Twitter情感分析(附代码)
机器学习研究会
50+阅读 · 2018年2月21日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员