In recent years, self-supervised learning (SSL) frameworks have been extensively applied to sensor-based Human Activity Recognition (HAR) in order to learn deep representations without data annotations. While SSL frameworks reach performance almost comparable to supervised models, studies on interpreting representations learnt by SSL models are limited. Nevertheless, modern explainability methods could help to unravel the differences between SSL and supervised representations: how they are being learnt, what properties of input data they preserve, and when SSL can be chosen over supervised training. In this paper, we aim to analyze deep representations of two recent SSL frameworks, namely SimCLR and VICReg. Specifically, the emphasis is made on (i) comparing the robustness of supervised and SSL models to corruptions in input data; (ii) explaining predictions of deep learning models using saliency maps and highlighting what input channels are mostly used for predicting various activities; (iii) exploring properties encoded in SSL and supervised representations using probing. Extensive experiments on two single-device datasets (MobiAct and UCI-HAR) have shown that self-supervised learning representations are significantly more robust to noise in unseen data compared to supervised models. In contrast, features learnt by the supervised approaches are more homogeneous across subjects and better encode the nature of activities.


翻译:近年来,自监督学习(SSL)框架被广泛用于基于传感器的人体活动识别(HAR),以学习深度表示而无需数据注释。尽管SSL框架的性能几乎与监督模型可比,但是对解释SSL模型学习的表示的研究有限。然而,现代可解释性方法可以帮助揭示SSL和监督表示之间的差异:它们如何学习,它们保留的输入数据属性,以及何时可以选择SSL训练。本文旨在分析最近的两个SSL框架(即SimCLR和VICReg)的深度表示。具体而言,重点是:(i)比较受监督和SSL模型对输入数据污染的鲁棒性;(ii)使用显著性地图解释深度学习模型的预测,并突出显示用于预测各种活动的输入通道;(iii)使用探测探索SSL和监督表示中编码的属性。对两个单设备数据集(MobiAct和UCI-HAR)进行的大量实验表明,与受监督的模型相比,自监督学习表示对未见数据中的噪声更加稳健。相反,由受监督方法学习的特征在被试之间更加均匀并更好地编码活动的性质。

0
下载
关闭预览

相关内容

专知会员服务
35+阅读 · 2021年7月7日
最新《Transformers模型》教程,64页ppt
专知会员服务
276+阅读 · 2020年11月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
浅聊对比学习(Contrastive Learning)
极市平台
2+阅读 · 2022年7月26日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2021年10月9日
Arxiv
10+阅读 · 2021年2月18日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员