Recently, convolutional filters have been increasingly adopted in sequential recommendation for their ability to capture local sequential patterns. However, most of these models complement convolutional filters with self-attention. This is because convolutional filters alone, generally fixed filters, struggle to capture global interactions necessary for accurate recommendation. We propose Time-Variant Convolutional Filters for Sequential Recommendation (TV-Rec), a model inspired by graph signal processing, where time-variant graph filters capture position-dependent temporal variations in user sequences. By replacing both fixed kernels and self-attention with time-variant filters, TV-Rec achieves higher expressive power and better captures complex interaction patterns in user behavior. This design not only eliminates the need for self-attention but also reduces computation while accelerating inference. Extensive experiments on six public benchmarks show that TV-Rec outperforms state-of-the-art baselines by an average of 7.49%.


翻译:近年来,卷积滤波器因其捕捉局部序列模式的能力,在序列推荐中得到了越来越多的应用。然而,这些模型大多将卷积滤波器与自注意力机制结合使用。这是因为通常采用固定滤波器的卷积滤波器单独使用时,难以捕捉准确推荐所需的全局交互。我们提出了用于序列推荐的时间变体卷积滤波器(TV-Rec),该模型受图信号处理启发,通过时间变体图滤波器捕捉用户序列中与位置相关的时序变化。通过用时变滤波器同时替代固定卷积核与自注意力机制,TV-Rec实现了更高的表达能力,并更好地捕捉了用户行为中的复杂交互模式。这一设计不仅消除了对自注意力的依赖,还降低了计算复杂度并加速了推理过程。在六个公开基准数据集上的大量实验表明,TV-Rec平均优于现有最先进基线模型7.49%。

0
下载
关闭预览

相关内容

在数学(特别是功能分析)中,卷积是对两个函数(f和g)的数学运算,产生三个函数,表示第一个函数的形状如何被另一个函数修改。 卷积一词既指结果函数,又指计算结果的过程。 它定义为两个函数的乘积在一个函数反转和移位后的积分。 并针对所有shift值评估积分,从而生成卷积函数。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员