Multi-Instance Learning(MIL) aims to learn the mapping between a bag of instances and the bag-level label. Therefore, the relationships among instances are very important for learning the mapping. In this paper, we propose an MIL algorithm based on a graph built by structural relationship among instances within a bag. Then, Graph Convolutional Network(GCN) and the graph-attention mechanism are used to learn bag-embedding. In the task of medical image classification, our GCN-based MIL algorithm makes full use of the structural relationships among patches(instances) in an original image space domain, and experimental results verify that our method is more suitable for handling medical high-resolution images. We also verify experimentally that the proposed method achieves better results than previous methods on five bechmark MIL datasets and four medical image datasets.


翻译:多因子学习(MIL) 旨在学习一包实例和包层标签之间的映射。 因此, 实例之间的关系对于学习映射非常重要 。 在本文中, 我们根据一个包中各实例之间的结构关系构建的图表提出一个MIL算法。 然后, 图形革命网络(GCN) 和图形注意机制被用来学习包装。 在医学图像分类的任务中, 我们基于 GCN 的 MIL 算法充分利用了原始图像空间域中各补丁( Insistances) 之间的结构关系, 实验结果可以证实我们的方法更适合处理高分辨率的医疗图像。 我们还通过实验来核实, 拟议的方法在5个赫马克 MIL 数据集和 4个医疗图像数据集上取得了比以往方法更好的效果。

0
下载
关闭预览

相关内容

【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
已删除
将门创投
14+阅读 · 2019年5月29日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
论文浅尝 | Global Relation Embedding for Relation Extraction
开放知识图谱
12+阅读 · 2019年3月3日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
17+阅读 · 2021年2月15日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
3+阅读 · 2018年2月7日
VIP会员
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
已删除
将门创投
14+阅读 · 2019年5月29日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
论文浅尝 | Global Relation Embedding for Relation Extraction
开放知识图谱
12+阅读 · 2019年3月3日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员