题目: Multi-view Knowledge Graph Embedding for Entity Alignment
摘要: 我们研究了知识图谱之间基于嵌入的实体对齐问题。之前的研究主要集中在实体的关系结构上。有些还进一步合并了另一种类型的特性,比如属性,以进行细化。然而,大量的实体特征尚未被探索或没有被平等地放在一起处理,这损害了基于嵌入的实体对齐的准确性和鲁棒性。在本文中,我们提出了一个新的框架,统一实体的多个视图来学习嵌入来实现实体对齐。具体来说,我们根据实体名称、关系和属性的视图嵌入实体,并使用几种组合策略。此外,我们设计了一些跨KG推理方法来增强两个KG之间的对齐。我们在真实数据集上的实验表明,所提出的框架显著优于目前最先进的基于嵌入的实体对齐方法。所选择的视图、跨KG推理和组合策略都有助于性能的提高。
题目: M2GRL: A Multi-task Multi-view Graph Representation Learning Framework for Web-scale Recommender Systems
摘要: 将图表示学习与多视图数据(边信息)相结合进行推荐是当前行业的发展趋势。现有的方法大多可归纳为多视图表示融合;它们首先构建一个图,然后将多视图数据集成到图中每个节点的一个紧凑表示中。然而,这些方法在工程和算法方面都引起了关注:1)工业中的多视图数据丰富且信息量大,可能超过单个矢量的能力;2)由于多视图数据往往来自不同的分布,可能会引入归纳偏差。在本文中,我们使用多视图表示对齐方法来解决这个问题。特别地,我们提出了一个多任务多视图图表示学习框架(M2GRL),用于从多视图图中学习节点表示。M2GRL为每个单视图数据构造一个图,从多个图中学习多个独立的表达式,并执行与模型跨视图关系的对齐。M2GRL选择了多任务学习范式来联合学习视图内表示和跨视图关系。M2GRL运用同方差不确定性自适应调整训练过程中任务的减重。我们在淘宝上部署了M2GRL,并对它进行了570亿例的培训。根据离线度量和在线A/B测试,M2GRL显著优于其他最先进的算法。在淘宝上对多样性推荐的进一步探索表明,利用M2GRL产生的多重表示是有效的,我们认为这是一个很有前途的方向,为各种不同重点的行业推荐任务。
题目: Low-Dimensional Hyperbolic Knowledge Graph Embeddings
摘要: 知识图谱(KG)嵌入通过学习实体和关系的低维表示,以预测缺失事实。KGs通常具有层次结构和逻辑模式,必须在嵌入空间中保留这些模式。对于分层数据,双曲嵌入方法已显示出高保真度和简洁表示的优势。然而,现有的双曲嵌入方法不能解释KGs中丰富的逻辑模式。在本工作中,我们引入了一类双曲KG嵌入模型,可以同时捕获层次和逻辑模式。我们的方法结合双曲反射和旋转注意力模型复杂的关系模式。在标准KG基准上的实验结果表明,我们的方法在低维的平均倒数(MRR)方面比预先的欧几里得和双曲的工作提高了6.1%。此外,我们观察到不同的几何变换捕捉不同类型的关系,而基于注意的变换则推广到多重关系。在高维情况下,我们的方法在WN18RR和YAGO3-10上分别获得了49.6%和57.7%的最先进的MRR。
有关实体及其关系的真实世界事实的知识库是各种自然语言处理任务的有用资源。然而,由于知识库通常是不完整的,因此能够执行知识库补全或链接预测是很有用的。本文全面概述了用于知识库完成的实体和关系的嵌入模型,总结了标准基准数据集上最新的实验结果。
题目: Learning Attention-based Embeddings for Relation Prediction in Knowledge Graphs
摘要: 近年来随着知识图谱(KGs)的大量涌现,加上实体间缺失关系(链接)的不完全或部分信息,催生了大量关于知识库补全(也称为关系预测)的研究。最近的一些研究表明,基于卷积神经网络(CNN)的模型能够生成更丰富、更有表现力的特征嵌入,因此在关系预测方面也有很好的表现。然而,我们观察到这些KG嵌入独立地处理三元组,因此不能捕获到三元组周围的复杂和隐藏的信息。为此,本文提出了一种新的基于注意的特征嵌入方法,该方法能同时捕获任意给定实体邻域内的实体特征和关系特征。此外,我们还在模型中封装了关系集群和多跳关系。我们的实验研究为我们基于注意力的模型的有效性提供了深入的见解,并且与所有数据集上的最先进的方法相比,有显著的性能提升。
【导读】2020 年 2 月 7 日-2 月 12 日,AAAI 2020 在美国纽约举办。Michael Galkin撰写了AAAI2020知识图谱论文相关研究趋势包括:KG-Augmented语言模型,异构KGs中的实体匹配,KG完成和链路预测,基于kg的会话人工智能和问题回答,包括论文,值得查看!
Hiroaki Hayashi, Zecong Hu, Chenyan Xiong, Graham Neubig: Latent Relation Language Models. AAAI 2020
We study the problem of embedding-based entity alignment between knowledge graphs (KGs). Previous works mainly focus on the relational structure of entities. Some further incorporate another type of features, such as attributes, for refinement. However, a vast of entity features are still unexplored or not equally treated together, which impairs the accuracy and robustness of embedding-based entity alignment. In this paper, we propose a novel framework that unifies multiple views of entities to learn embeddings for entity alignment. Specifically, we embed entities based on the views of entity names, relations and attributes, with several combination strategies. Furthermore, we design some cross-KG inference methods to enhance the alignment between two KGs. Our experiments on real-world datasets show that the proposed framework significantly outperforms the state-of-the-art embedding-based entity alignment methods. The selected views, cross-KG inference and combination strategies all contribute to the performance improvement.