Many scientific software platforms provide plugin mechanisms that simplify the integration, deployment, and execution of externally developed functionality. One of the most widely used platforms in the imaging space is Fiji, a popular open-source application for scientific image analysis. Fiji incorporates and builds on the ImageJ and ImageJ2 platforms, which provide a powerful plugin architecture used by thousands of plugins to solve a wide variety of problems. This capability is a major part of Fiji's success, and it has become a widely used biological image analysis tool and a target for new functionality. However, a plugin-based software architecture cannot unify disparate platforms operating on incompatible data structures; interoperability necessitates the creation of adaptation or "bridge" layers to translate data and invoke functionality. As a result, while platforms like Fiji enable a high degree of interconnectivity and extensibility, they were not fundamentally designed to integrate across the many data types, programming languages, and architectural differences of various software platforms.To help address this challenge, we present SciJava Ops, a foundational software library for expressing algorithms as plugins in a unified and extensible way. Continuing the evolution of Fiji's SciJava plugin mechanism, SciJava Ops enables users to harness algorithms from various software platforms within a central execution environment. In addition, SciJava Ops automatically adapts data into the most appropriate structure for each algorithm, allowing users to freely and transparently combine algorithms from otherwise incompatible tools. While SciJava Ops is initially distributed as a Fiji update site, the framework does not require Fiji, ImageJ, or ImageJ2, and would be suitable for integration with additional image analysis platforms.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员