Research in secure multi-party computation using a deck of playing cards, often called card-based cryptography, dates back to 1989 when Den Boer introduced the "five-card trick" to compute the logical AND function. Since then, many protocols to compute different functions have been developed. In this paper, we propose a new encoding scheme that uses five cards to encode each integer in $\mathbb{Z}/6\mathbb{Z}$. Using this encoding scheme, we develop protocols that can copy a commitment with 13 cards, add two integers with 10 cards, and multiply two integers with 14 cards. All of our protocols are the currently best known protocols in terms of the required number of cards. Our encoding scheme can be generalized to encode integers in $\mathbb{Z}/n\mathbb{Z}$ for other values of $n$ as well.
翻译:使用扑克牌(通常称为基于纸牌的密码学)进行安全多党计算的研究,通常称为基于纸牌的密码学,可追溯到1989年,当时Den Boer引入了“五张卡把戏”来计算逻辑和功能。从那时以来,已经制定了许多计算不同功能的规程。在本文中,我们提出了一个新的编码方案,使用五张卡来编码每个整数,以$\mathb ⁇ /6\mathb ⁇ $编码。我们利用这个编码方案,开发了可以复制13张承诺的规程,增加了两张整数,以10张卡加两张整数加上14张卡的规程。我们的所有规程都是目前最已知的关于所需卡数的规程。我们的编码计划可以普遍化为$\mathb ⁇ /n\mathbb ⁇ $的整数编码,其他值也为$。