Training Graph Convolutional Networks (GCNs) is expensive as it needs to aggregate data recursively from neighboring nodes. To reduce the computation overhead, previous works have proposed various neighbor sampling methods that estimate the aggregation result based on a small number of sampled neighbors. Although these methods have successfully accelerated the training, they mainly focus on the single-machine setting. As real-world graphs are large, training GCNs in distributed systems is desirable. However, we found that the existing neighbor sampling methods do not work well in a distributed setting. Specifically, a naive implementation may incur a huge amount of communication of feature vectors among different machines. To address this problem, we propose a communication-efficient neighbor sampling method in this work. Our main idea is to assign higher sampling probabilities to the local nodes so that remote nodes are accessed less frequently. We present an algorithm that determines the local sampling probabilities and makes sure our skewed neighbor sampling does not affect much the convergence of the training. Our experiments with node classification benchmarks show that our method significantly reduces the communication overhead for distributed GCN training with little accuracy loss.


翻译:为了减少计算间接费用,先前的工程提出了各种邻居抽样方法,根据少量抽样邻居估算汇总结果。虽然这些方法成功地加快了培训速度,但主要侧重于单机设置。由于真实世界图图是巨大的,在分布式系统中培训GCN是可取的。然而,我们发现现有的邻居取样方法在分布式环境中效果不好。具体地说,天真的实施可能在不同机器之间产生大量地物矢量的通信。为解决这一问题,我们提出了一种通信效率高的邻居取样方法。我们的主要想法是给本地节点指定更高的采样概率,以便更经常地访问远程节点。我们提出了一个算法,确定当地的采样概率,并确保我们偏差的邻居取样不会影响培训的趋同性。我们用节点分类基准进行的实验表明,我们的方法大大降低了传播GCN培训的通信量,但准确性损失很小。

0
下载
关闭预览

相关内容

【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
152+阅读 · 2020年5月26日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
105+阅读 · 2020年5月3日
一文读懂图卷积GCN
计算机视觉life
21+阅读 · 2019年12月21日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年3月15日
Arxiv
18+阅读 · 2020年7月13日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
VIP会员
相关资讯
一文读懂图卷积GCN
计算机视觉life
21+阅读 · 2019年12月21日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员