It is a long-term goal to transfer biological processing principles as well as the power of human recognition into machine vision and engineering systems. One of such principles is visual attention, a smart human concept which focuses processing on a part of a scene. In this contribution, we utilize attention to improve the automatic detection of defect patterns for wafers within the domain of semiconductor manufacturing. Previous works in the domain have often utilized classical machine learning approaches such as KNNs, SVMs, or MLPs, while a few have already used modern approaches like deep neural networks (DNNs). However, one problem in the domain is that the faults are often very small and have to be detected within a larger size of the chip or even the wafer. Therefore, small structures in the size of pixels have to be detected in a vast amount of image data. One interesting principle of the human brain for solving this problem is visual attention. Hence, we employ here a biologically plausible model of visual attention for automatic visual inspection. We propose a hybrid system of visual attention and a deep neural network. As demonstrated, our system achieves among other decisive advantages an improvement in accuracy from 81% to 92%, and an increase in accuracy for detecting faults from 67% to 88%. Hence, the error rates are reduced from 19% to 8%, and notably from 33% to 12% for detecting a fault in a chip. These results show that attention can greatly improve the performance of visual inspection systems. Furthermore, we conduct a broad evaluation, identifying specific advantages of the biological attention model in this application, and benchmarks standard deep learning approaches as an alternative with and without attention. This work is an extended arXiv version of the original conference article published in "IECON 2020", which has been extended regarding visual attention.


翻译:将生物处理原则以及人类认知的力量传输到机器视觉和工程系统是一个长期目标。 其中一个原则是视觉关注, 一个聪明的人类概念, 其重点是在场景的某个部分进行处理。 在这个贡献中, 我们利用注意力改进半导体制造领域微粒体缺陷模式的自动检测。 该领域以前的工作经常使用传统机器学习方法, 如 KNN、 SVMS 或 MLPs, 而少数人已经使用了深层视觉网络等现代方法。 但是, 域中的一个问题是, 错误往往非常小, 并且必须在更大的芯片甚至瓦弗的范围内检测到。 因此, 在大量的图像数据中, 要检测微粒体积小的像素结构。 人类大脑解决这一问题的一个有趣的原则是视觉关注。 因此, 我们在这里采用了一种生物上可信的视觉关注模式, 并且一个深层神经网络。 事实表明, 我们的系统在从更深层次的视觉关注和深层神经网络的应用中, 在更大范围的应用中, 在更大范围的芯片大小的精度中, 在比的精确度方面, 从81%的精确度上, 从81%到12 %的精确度上, 的精确度的精确度上, 可以看到的精确度上, 从38的精确度提高了的精确度, 从38的精确度, 从81%到12度的精确度, 的精确度, 从8 %的精确度, 的精确度, 从185比的精确度, 从185比的精确度可以看出, 从81%的精确度, 从81%到12度, 的精确度, 直度, 的精确度的精确度可以看出, 从18%, 提高。

1
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
16+阅读 · 2021年3月2日
Arxiv
15+阅读 · 2018年6月23日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员