Traditional named entity recognition (NER) aims to identify text mentions into pre-defined entity types. Continual Named Entity Recognition (CNER) is introduced since entity categories are continuously increasing in various real-world scenarios. However, existing continual learning (CL) methods for NER face challenges of catastrophic forgetting and semantic shift of non-entity type. In this paper, we propose GenCNER, a simple but effective Generative framework for CNER to mitigate the above drawbacks. Specifically, we skillfully convert the CNER task into sustained entity triplet sequence generation problem and utilize a powerful pre-trained seq2seq model to solve it. Additionally, we design a type-specific confidence-based pseudo labeling strategy along with knowledge distillation (KD) to preserve learned knowledge and alleviate the impact of label noise at the triplet level. Experimental results on two benchmark datasets show that our framework outperforms previous state-of-the-art methods in multiple CNER settings, and achieves the smallest gap compared with non-CL results.


翻译:传统的命名实体识别(NER)旨在将文本提及识别为预定义的实体类型。由于现实场景中实体类别持续增加,持续命名实体识别(CNER)应运而生。然而,现有的NER持续学习方法面临灾难性遗忘和非实体类型语义偏移的挑战。本文提出GenCNER,一种简单而有效的生成式框架用于CNER,以缓解上述缺陷。具体而言,我们巧妙地将CNER任务转化为持续的实体三元组序列生成问题,并利用强大的预训练序列到序列模型来解决它。此外,我们设计了一种基于类型特定置信度的伪标注策略,并结合知识蒸馏(KD),以保留已学知识并在三元组层面减轻标签噪声的影响。在两个基准数据集上的实验结果表明,我们的框架在多种CNER设置下优于先前的最先进方法,并且与非持续学习结果相比差距最小。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员