Unsupervised person re-identification (re-ID) attractsincreasing attention due to its practical applications in in-dustry. State-of-the-art unsupervised re-ID methods trainthe neural networks using a memory-based non-parametricsoftmax loss. They store the pre-computed instance featurevectors inside the memory, assign pseudo labels to them us-ing clustering algorithm, and compare the query instancesto the cluster using a form of contrastive loss. Duringtraining, the instance feature vectors are updated. How-ever, due to the varying cluster size, the updating progressfor each cluster is inconsistent. To solve this problem, wepresent Cluster Contrast which stores feature vectors andcomputes contrast loss in the cluster level. We demonstratethat the inconsistency problem for cluster feature represen-tation can be solved by the cluster-level memory dictionary.By straightforwardly applying Cluster Contrast to a stan-dard unsupervised re-ID pipeline, it achieves considerableimprovements of 9.5%, 7.5%, 6.6% compared to state-of-the-art purely unsupervised re-ID methods and 5.1%, 4.0%,6.5% mAP compared to the state-of-the-art unsuperviseddomain adaptation re-ID methods on the Market, Duke, andMSMT17 datasets.Our source code is available at https://github.com/wangguangyuan/ClusterContrast.git.


翻译:无人监督的人重新定位( re- ID) 因其在工业中的实际应用而吸引了越来越多的关注。 最先进的、 不受监督的重置方法使用基于内存的非参数性软体损失来训练神经网络。 它们将预审的审校特征显示器存储在记忆中, 为它们指定假标签, 并使用对比式损失的形式将质点与群集比较。 培训期间, 例样特性矢量更新。 由于组群大小不同, 每个组群的更新进度不一致。 要解决这个问题, 我们展示了存储矢量的群集对比器, 并比较了组级一级的损失。 我们证明集集前的审校特征识别器的不一致问题可以通过集级级记忆词典解决。 直接应用群集与斯坦达分解的重置线性重置管道的对比, 它实现了9.5%、 7.5 %、 每个组群集的更新进度是不一致的。 与州- 州- 州- 州- 域- 区域- 域- 系统- 版本 的 RUD- 格式 格式 格式 版本- 版本 格式- 格式- 系统- 系统- 版本 格式- 格式- 格式- 格式- 格式- 格式- 版本- 格式- 版本- 版本- 版本- 版本- 版本- 格式- 格式- 格式- 格式- 格式- 格式- 格式- 格式- 格式- 格式- 格式- 格式- 格式- 格式- 格式- 格式- 格式- 格式- 格式- 版本- 版本- 版本- 版本- 版本- 版本- 版本- 版本- 版本- 版本- 版本- 版本- 版本- 版本- 版本- 版本- 版本- 版本- 版本- 版本- 版本- 版本- 版本- 版本- 版本- 版本- 版本- 版本- 版本- 版本- 版本- 版本- 版本- 版本- 版本- 版本- 版本- 版本- 版本- 版本- 版本- 版本- 版本- 版本- 版本- 版本- 版本- 版本- 版本- 版本- 版本- 版本

1
下载
关闭预览

相关内容

【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
76+阅读 · 2021年1月30日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
30+阅读 · 2020年4月23日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
14+阅读 · 2017年11月16日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
11+阅读 · 2021年2月17日
Arxiv
31+阅读 · 2020年9月21日
Arxiv
9+阅读 · 2018年3月28日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
14+阅读 · 2017年11月16日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员