Recent advancements in natural language processing \cite{gpt2} \cite{BERT} have led to near-human performance in multiple natural language tasks. In this paper, we seek to understand whether similar techniques can be applied to a highly structured environment with strict syntax rules. Specifically, we propose an end-to-end machine learning model for code generation in the Python language built on-top of pre-trained language models. We demonstrate that a fine-tuned model can perform well in code generation tasks, achieving a BLEU score of 0.22, an improvement of 46\% over a reasonable sequence-to-sequence baseline. All results and related code used for training and data processing are available on GitHub.


翻译:最近在自然语言处理\cite{gpt2}\cite{BERT}方面取得的进步导致在多种自然语言任务中几乎人性化的表现。 在本文中,我们试图了解是否类似的技术可以适用于结构严密的环境,并有严格的语法规则。 具体地说,我们提议了在预先培训的语言模式上搭建的Python语言代码生成端到端机学习模式。 我们证明微调模式在代码生成任务中表现良好,达到0.22的BLEU分,比合理的顺序到顺序基线改进了46 ⁇ 。 GitHub 提供了用于培训和数据处理的所有结果和相关代码。

0
下载
关闭预览

相关内容

最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
71+阅读 · 2020年10月24日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Arxiv
0+阅读 · 2021年4月15日
Arxiv
21+阅读 · 2019年8月21日
How to Fine-Tune BERT for Text Classification?
Arxiv
13+阅读 · 2019年5月14日
VIP会员
相关VIP内容
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
71+阅读 · 2020年10月24日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Top
微信扫码咨询专知VIP会员