Many natural language processing tasks solely rely on sparse dependencies between a few tokens in a sentence. Soft attention mechanisms show promising performance in modeling local/global dependencies by soft probabilities between every two tokens, but they are not effective and efficient when applied to long sentences. By contrast, hard attention mechanisms directly select a subset of tokens but are difficult and inefficient to train due to their combinatorial nature. In this paper, we integrate both soft and hard attention into one context fusion model, "reinforced self-attention (ReSA)", for the mutual benefit of each other. In ReSA, a hard attention trims a sequence for a soft self-attention to process, while the soft attention feeds reward signals back to facilitate the training of the hard one. For this purpose, we develop a novel hard attention called "reinforced sequence sampling (RSS)", selecting tokens in parallel and trained via policy gradient. Using two RSS modules, ReSA efficiently extracts the sparse dependencies between each pair of selected tokens. We finally propose an RNN/CNN-free sentence-encoding model, "reinforced self-attention network (ReSAN)", solely based on ReSA. It achieves state-of-the-art performance on both Stanford Natural Language Inference (SNLI) and Sentences Involving Compositional Knowledge (SICK) datasets.

3
下载
关闭预览

相关内容

Attention机制最早是在视觉图像领域提出来的,但是真正火起来应该算是google mind团队的这篇论文《Recurrent Models of Visual Attention》[14],他们在RNN模型上使用了attention机制来进行图像分类。随后,Bahdanau等人在论文《Neural Machine Translation by Jointly Learning to Align and Translate》 [1]中,使用类似attention的机制在机器翻译任务上将翻译和对齐同时进行,他们的工作算是是第一个提出attention机制应用到NLP领域中。接着类似的基于attention机制的RNN模型扩展开始应用到各种NLP任务中。最近,如何在CNN中使用attention机制也成为了大家的研究热点。下图表示了attention研究进展的大概趋势。

In Multi-Label Text Classification (MLTC), one sample can belong to more than one class. It is observed that most MLTC tasks, there are dependencies or correlations among labels. Existing methods tend to ignore the relationship among labels. In this paper, a graph attention network-based model is proposed to capture the attentive dependency structure among the labels. The graph attention network uses a feature matrix and a correlation matrix to capture and explore the crucial dependencies between the labels and generate classifiers for the task. The generated classifiers are applied to sentence feature vectors obtained from the text feature extraction network (BiLSTM) to enable end-to-end training. Attention allows the system to assign different weights to neighbor nodes per label, thus allowing it to learn the dependencies among labels implicitly. The results of the proposed model are validated on five real-world MLTC datasets. The proposed model achieves similar or better performance compared to the previous state-of-the-art models.

0
35
下载
预览

Visual-semantic embedding enables various tasks such as image-text retrieval, image captioning, and visual question answering. The key to successful visual-semantic embedding is to express visual and textual data properly by accounting for their intricate relationship. While previous studies have achieved much advance by encoding the visual and textual data into a joint space where similar concepts are closely located, they often represent data by a single vector ignoring the presence of multiple important components in an image or text. Thus, in addition to the joint embedding space, we propose a novel multi-head self-attention network to capture various components of visual and textual data by attending to important parts in data. Our approach achieves the new state-of-the-art results in image-text retrieval tasks on MS-COCO and Flicker30K datasets. Through the visualization of the attention maps that capture distinct semantic components at multiple positions in the image and the text, we demonstrate that our method achieves an effective and interpretable visual-semantic joint space.

0
3
下载
预览

Self-attention network (SAN) has recently attracted increasing interest due to its fully parallelized computation and flexibility in modeling dependencies. It can be further enhanced with multi-headed attention mechanism by allowing the model to jointly attend to information from different representation subspaces at different positions (Vaswani et al., 2017). In this work, we propose a novel convolutional self-attention network (CSAN), which offers SAN the abilities to 1) capture neighboring dependencies, and 2) model the interaction between multiple attention heads. Experimental results on WMT14 English-to-German translation task demonstrate that the proposed approach outperforms both the strong Transformer baseline and other existing works on enhancing the locality of SAN. Comparing with previous work, our model does not introduce any new parameters.

0
4
下载
预览

Although end-to-end neural text-to-speech (TTS) methods (such as Tacotron2) are proposed and achieve state-of-the-art performance, they still suffer from two problems: 1) low efficiency during training and inference; 2) hard to model long dependency using current recurrent neural networks (RNNs). Inspired by the success of Transformer network in neural machine translation (NMT), in this paper, we introduce and adapt the multi-head attention mechanism to replace the RNN structures and also the original attention mechanism in Tacotron2. With the help of multi-head self-attention, the hidden states in the encoder and decoder are constructed in parallel, which improves the training efficiency. Meanwhile, any two inputs at different times are connected directly by self-attention mechanism, which solves the long range dependency problem effectively. Using phoneme sequences as input, our Transformer TTS network generates mel spectrograms, followed by a WaveNet vocoder to output the final audio results. Experiments are conducted to test the efficiency and performance of our new network. For the efficiency, our Transformer TTS network can speed up the training about 4.25 times faster compared with Tacotron2. For the performance, rigorous human tests show that our proposed model achieves state-of-the-art performance (outperforms Tacotron2 with a gap of 0.048) and is very close to human quality (4.39 vs 4.44 in MOS).

0
5
下载
预览

The celebrated Sequence to Sequence learning (Seq2Seq) technique and its numerous variants achieve excellent performance on many tasks. However, many machine learning tasks have inputs naturally represented as graphs; existing Seq2Seq models face a significant challenge in achieving accurate conversion from graph form to the appropriate sequence. To address this challenge, we introduce a novel general end-to-end graph-to-sequence neural encoder-decoder model that maps an input graph to a sequence of vectors and uses an attention-based LSTM method to decode the target sequence from these vectors. Our method first generates the node and graph embeddings using an improved graph-based neural network with a novel aggregation strategy to incorporate edge direction information in the node embeddings. We further introduce an attention mechanism that aligns node embeddings and the decoding sequence to better cope with large graphs. Experimental results on bAbI, Shortest Path, and Natural Language Generation tasks demonstrate that our model achieves state-of-the-art performance and significantly outperforms existing graph neural networks, Seq2Seq, and Tree2Seq models; using the proposed bi-directional node embedding aggregation strategy, the model can converge rapidly to the optimal performance.

0
6
下载
预览

In this paper, we propose Dynamic Self-Attention (DSA), a new self-attention mechanism for sentence embedding. We design DSA by modifying dynamic routing in capsule network (Sabouretal.,2017) for natural language processing. DSA attends to informative words with a dynamic weight vector. We achieve new state-of-the-art results among sentence encoding methods in Stanford Natural Language Inference (SNLI) dataset with the least number of parameters, while showing comparative results in Stanford Sentiment Treebank (SST) dataset.

0
7
下载
预览

This paper proposes hybrid semi-Markov conditional random fields (SCRFs) for neural sequence labeling in natural language processing. Based on conventional conditional random fields (CRFs), SCRFs have been designed for the tasks of assigning labels to segments by extracting features from and describing transitions between segments instead of words. In this paper, we improve the existing SCRF methods by employing word-level and segment-level information simultaneously. First, word-level labels are utilized to derive the segment scores in SCRFs. Second, a CRF output layer and an SCRF output layer are integrated into an unified neural network and trained jointly. Experimental results on CoNLL 2003 named entity recognition (NER) shared task show that our model achieves state-of-the-art performance when no external knowledge is used.

0
4
下载
预览

Attention mechanism has been used as an ancillary means to help RNN or CNN. However, the Transformer (Vaswani et al., 2017) recently recorded the state-of-the-art performance in machine translation with a dramatic reduction in training time by solely using attention. Motivated by the Transformer, Directional Self Attention Network (Shen et al., 2017), a fully attention-based sentence encoder, was proposed. It showed good performance with various data by using forward and backward directional information in a sentence. But in their study, not considered at all was the distance between words, an important feature when learning the local dependency to help understand the context of input text. We propose Distance-based Self-Attention Network, which considers the word distance by using a simple distance mask in order to model the local dependency without losing the ability of modeling global dependency which attention has inherent. Our model shows good performance with NLI data, and it records the new state-of-the-art result with SNLI data. Additionally, we show that our model has a strength in long sentences or documents.

0
10
下载
预览

Semantic Role Labeling (SRL) is believed to be a crucial step towards natural language understanding and has been widely studied. Recent years, end-to-end SRL with recurrent neural networks (RNN) has gained increasing attention. However, it remains a major challenge for RNNs to handle structural information and long range dependencies. In this paper, we present a simple and effective architecture for SRL which aims to address these problems. Our model is based on self-attention which can directly capture the relationships between two tokens regardless of their distance. Our single model achieves F$_1=83.4$ on the CoNLL-2005 shared task dataset and F$_1=82.7$ on the CoNLL-2012 shared task dataset, which outperforms the previous state-of-the-art results by $1.8$ and $1.0$ F$_1$ score respectively. Besides, our model is computationally efficient, and the parsing speed is 50K tokens per second on a single Titan X GPU.

0
13
下载
预览

Recurrent neural nets (RNN) and convolutional neural nets (CNN) are widely used on NLP tasks to capture the long-term and local dependencies, respectively. Attention mechanisms have recently attracted enormous interest due to their highly parallelizable computation, significantly less training time, and flexibility in modeling dependencies. We propose a novel attention mechanism in which the attention between elements from input sequence(s) is directional and multi-dimensional (i.e., feature-wise). A light-weight neural net, "Directional Self-Attention Network (DiSAN)", is then proposed to learn sentence embedding, based solely on the proposed attention without any RNN/CNN structure. DiSAN is only composed of a directional self-attention with temporal order encoded, followed by a multi-dimensional attention that compresses the sequence into a vector representation. Despite its simple form, DiSAN outperforms complicated RNN models on both prediction quality and time efficiency. It achieves the best test accuracy among all sentence encoding methods and improves the most recent best result by 1.02% on the Stanford Natural Language Inference (SNLI) dataset, and shows state-of-the-art test accuracy on the Stanford Sentiment Treebank (SST), Multi-Genre natural language inference (MultiNLI), Sentences Involving Compositional Knowledge (SICK), Customer Review, MPQA, TREC question-type classification and Subjectivity (SUBJ) datasets.

0
16
下载
预览
小贴士
相关论文
Ankit Pal,Muru Selvakumar,Malaikannan Sankarasubbu
35+阅读 · 2020年3月22日
MHSAN: Multi-Head Self-Attention Network for Visual Semantic Embedding
Geondo Park,Chihye Han,Wonjun Yoon,Daeshik Kim
3+阅读 · 2020年1月11日
Baosong Yang,Longyue Wang,Derek F. Wong,Lidia S. Chao,Zhaopeng Tu
4+阅读 · 2019年4月8日
Neural Speech Synthesis with Transformer Network
Naihan Li,Shujie Liu,Yanqing Liu,Sheng Zhao,Ming Liu,Ming Zhou
5+阅读 · 2019年1月30日
Graph2Seq: Graph to Sequence Learning with Attention-based Neural Networks
Kun Xu,Lingfei Wu,Zhiguo Wang,Yansong Feng,Michael Witbrock,Vadim Sheinin
6+阅读 · 2018年12月3日
Dynamic Self-Attention : Computing Attention over Words Dynamically for Sentence Embedding
Deunsol Yoon,Dongbok Lee,SangKeun Lee
7+阅读 · 2018年8月22日
Zhi-Xiu Ye,Zhen-Hua Ling
4+阅读 · 2018年5月10日
Jinbae Im,Sungzoon Cho
10+阅读 · 2017年12月6日
Zhixing Tan,Mingxuan Wang,Jun Xie,Yidong Chen,Xiaodong Shi
13+阅读 · 2017年12月5日
Tao Shen,Tianyi Zhou,Guodong Long,Jing Jiang,Shirui Pan,Chengqi Zhang
16+阅读 · 2017年11月20日
相关VIP内容
Stabilizing Transformers for Reinforcement Learning
专知会员服务
23+阅读 · 2019年10月17日
注意力机制介绍,Attention Mechanism
专知会员服务
104+阅读 · 2019年10月13日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
32+阅读 · 2019年9月29日
Top