Ontology Alignment (OA) is essential for enabling semantic interoperability across heterogeneous knowledge systems. While recent advances have focused on large language models (LLMs) for capturing contextual semantics, this work revisits the underexplored potential of Knowledge Graph Embedding (KGE) models, which offer scalable, structure-aware representations well-suited to ontology-based tasks. Despite their effectiveness in link prediction, KGE methods remain underutilized in OA, with most prior work focusing narrowly on a few models. To address this gap, we reformulate OA as a link prediction problem over merged ontologies represented as RDF-style triples and develop a modular framework, integrated into the OntoAligner library, that supports 17 diverse KGE models. The system learns embeddings from a combined ontology and aligns entities by computing cosine similarity between their representations. We evaluate our approach using standard metrics across seven benchmark datasets spanning five domains: Anatomy, Biodiversity, Circular Economy, Material Science and Engineering, and Biomedical Machine Learning. Two key findings emerge: first, KGE models like ConvE and TransF consistently produce high-precision alignments, outperforming traditional systems in structure-rich and multi-relational domains; second, while their recall is moderate, this conservatism makes KGEs well-suited for scenarios demanding high-confidence mappings. Unlike LLM-based methods that excel at contextual reasoning, KGEs directly preserve and exploit ontology structure, offering a complementary and computationally efficient strategy. These results highlight the promise of embedding-based OA and open pathways for further work on hybrid models and adaptive strategies.


翻译:本体对齐(OA)对于实现异构知识系统间的语义互操作性至关重要。尽管近期研究主要集中于利用大语言模型(LLM)捕捉上下文语义,但本文重新审视了知识图谱嵌入(KGE)模型尚未充分挖掘的潜力,该类模型能够提供可扩展且结构感知的表示,非常适合基于本体的任务。尽管KGE方法在链接预测中表现优异,但在OA领域仍未得到充分利用,先前研究大多仅局限于少数模型。为填补这一空白,我们将OA重新定义为基于RDF风格三元组表示的合并本体上的链接预测问题,并开发了一个模块化框架,该框架已集成至OntoAligner库中,支持17种不同的KGE模型。该系统从合并本体中学习嵌入表示,并通过计算实体表示间的余弦相似度来实现实体对齐。我们在涵盖五个领域(解剖学、生物多样性、循环经济、材料科学与工程、生物医学机器学习)的七个基准数据集上,使用标准评估指标对本方法进行了验证。两个关键发现如下:首先,ConvE和TransF等KGE模型能够持续产生高精度对齐结果,在结构丰富和多关系领域中表现优于传统系统;其次,尽管其召回率处于中等水平,但这种保守性使得KGE模型特别适用于需要高置信度映射的场景。与擅长上下文推理的基于LLM的方法不同,KGE模型直接保持并利用本体结构,提供了一种互补且计算高效的策略。这些结果凸显了基于嵌入的OA方法的潜力,并为混合模型与自适应策略的后续研究开辟了道路。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2022年11月21日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
13+阅读 · 2021年3月3日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
12+阅读 · 2022年11月21日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
13+阅读 · 2021年3月3日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员