Ontology Alignment (OA) is essential for enabling semantic interoperability across heterogeneous knowledge systems. While recent advances have focused on large language models (LLMs) for capturing contextual semantics, this work revisits the underexplored potential of Knowledge Graph Embedding (KGE) models, which offer scalable, structure-aware representations well-suited to ontology-based tasks. Despite their effectiveness in link prediction, KGE methods remain underutilized in OA, with most prior work focusing narrowly on a few models. To address this gap, we reformulate OA as a link prediction problem over merged ontologies represented as RDF-style triples and develop a modular framework, integrated into the OntoAligner library, that supports 17 diverse KGE models. The system learns embeddings from a combined ontology and aligns entities by computing cosine similarity between their representations. We evaluate our approach using standard metrics across seven benchmark datasets spanning five domains: Anatomy, Biodiversity, Circular Economy, Material Science and Engineering, and Biomedical Machine Learning. Two key findings emerge: first, KGE models like ConvE and TransF consistently produce high-precision alignments, outperforming traditional systems in structure-rich and multi-relational domains; second, while their recall is moderate, this conservatism makes KGEs well-suited for scenarios demanding high-confidence mappings. Unlike LLM-based methods that excel at contextual reasoning, KGEs directly preserve and exploit ontology structure, offering a complementary and computationally efficient strategy. These results highlight the promise of embedding-based OA and open pathways for further work on hybrid models and adaptive strategies.
翻译:本体对齐(OA)对于实现异构知识系统间的语义互操作性至关重要。尽管近期研究主要集中于利用大语言模型(LLM)捕捉上下文语义,但本文重新审视了知识图谱嵌入(KGE)模型尚未充分挖掘的潜力,该类模型能够提供可扩展且结构感知的表示,非常适合基于本体的任务。尽管KGE方法在链接预测中表现优异,但在OA领域仍未得到充分利用,先前研究大多仅局限于少数模型。为填补这一空白,我们将OA重新定义为基于RDF风格三元组表示的合并本体上的链接预测问题,并开发了一个模块化框架,该框架已集成至OntoAligner库中,支持17种不同的KGE模型。该系统从合并本体中学习嵌入表示,并通过计算实体表示间的余弦相似度来实现实体对齐。我们在涵盖五个领域(解剖学、生物多样性、循环经济、材料科学与工程、生物医学机器学习)的七个基准数据集上,使用标准评估指标对本方法进行了验证。两个关键发现如下:首先,ConvE和TransF等KGE模型能够持续产生高精度对齐结果,在结构丰富和多关系领域中表现优于传统系统;其次,尽管其召回率处于中等水平,但这种保守性使得KGE模型特别适用于需要高置信度映射的场景。与擅长上下文推理的基于LLM的方法不同,KGE模型直接保持并利用本体结构,提供了一种互补且计算高效的策略。这些结果凸显了基于嵌入的OA方法的潜力,并为混合模型与自适应策略的后续研究开辟了道路。