The increasing demand for real-time, low-latency artificial intelligence applications has propelled the use of Field-Programmable Gate Arrays (FPGAs) for Convolutional Neural Network (CNN) implementations. FPGAs offer reconfigurability, energy efficiency, and performance advantages over GPUs, making them suitable for edge devices and embedded systems. This work presents a novel library of resource-efficient convolution IPs designed to automatically adapt to the available FPGA resources. Developed in VHDL, these IPs are parameterizable and utilize fixed-point arithmetic for optimal performance. Four IPs are introduced, each tailored to specific resource constraints, offering flexibility in DSP usage, logic consumption, and precision. Experimental results on a Zynq UltraScale+ FPGA highlight the trade-offs between performance and resource usage. The comparison with recent FPGA-based CNN acceleration techniques emphasizes the versatility and independence of this approach from specific FPGA architectures or technological advancements. Future work will expand the library to include pooling and activation functions, enabling broader applicability and integration into CNN frameworks.


翻译:实时低延迟人工智能应用需求的日益增长,推动了现场可编程门阵列(FPGA)在卷积神经网络(CNN)实现中的应用。相较于GPU,FPGA具有可重构性、高能效和性能优势,使其适用于边缘设备和嵌入式系统。本研究提出了一种新颖的资源高效型卷积IP核库,其设计能自动适应可用的FPGA资源。这些采用VHDL开发的IP核具有可参数化特性,并利用定点运算以实现最优性能。本文介绍了四种IP核,每种均针对特定资源约束进行定制,在DSP使用量、逻辑资源消耗和计算精度方面提供了灵活性。在Zynq UltraScale+ FPGA上的实验结果突显了性能与资源使用之间的权衡。与近期基于FPGA的CNN加速技术对比表明,该方法具有通用性,且不依赖于特定的FPGA架构或技术进步。未来工作将扩展该库以包含池化和激活函数,从而提升其普适性并促进与CNN框架的集成。

0
下载
关闭预览

相关内容

NeurIPS 是全球最受瞩目的AI、机器学习顶级学术会议之一,每年全球的人工智能爱好者和科学家都会在这里聚集,发布最新研究。NeurIPS 2019大会将在12月8日-14日在加拿大温哥华举行。据官方统计消息,NeurIPS今年共收到投稿6743篇,其中接收论文1428篇,接收率21.1%。官网地址:https://neurips.cc/

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
73+阅读 · 2018年12月22日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员