In this paper, we consider the problem of synthesizing a controller in the presence of uncertainty such that the resulting closed-loop system satisfies certain hard constraints while optimizing certain (soft) performance objectives. We assume that the hard constraints encoding safety or mission-critical task objectives are expressed using Signal Temporal Logic (STL), while performance is quantified using standard cost functions on system trajectories. In order to prioritize the satisfaction of the hard STL constraints, we utilize the framework of control barrier functions (CBFs) and algorithmically obtain CBFs for STL objectives. We assume that the controllers are modeled using neural networks (NNs) and provide an optimization algorithm to learn the optimal parameters for the NN controller that optimize the performance at a user-specified robustness margin for the safety specifications. We use the formalism of risk measures to evaluate the risk incurred by the trade-off between robustness margin of the system and its performance. We demonstrate the efficacy of our approach on well-known difficult examples for nonlinear control such as a quad-rotor and a unicycle, where the mission objectives for each system include hard timing constraints and safety objectives.
翻译:在本文中,我们考虑了在不确定的情况下将控制器综合在一起的问题,因此由此产生的封闭环环系统在优化某些(软)性业绩目标的同时满足了某些硬性限制。我们假定,硬性限制编码安全或任务关键任务目标的表达方式是使用信号时间逻辑(STL),而业绩则使用系统轨迹的标准成本功能加以量化。为了优先满足STL的硬性限制,我们利用控制屏障功能框架(CBFs)和逻辑方法为STL的目标获取 CBFs。我们假定,控制器是使用神经网络(NN)建模的,并提供优化算法,学习NNN控制器的最佳参数,在用户指定的稳健性安全规格范围内优化性能。我们使用正式的风险措施来评估系统坚固性差与其性能之间的交易风险。我们展示了我们对已知的非线性控制(如二次机器人和单周期)的困难例子的处理方法的有效性,其中每个系统的任务目标包括硬性时间限制和安全目标。