The estimation of treatment effects is a pervasive problem in medicine. Existing methods for estimating treatment effects from longitudinal observational data assume that there are no hidden confounders, an assumption that is not testable in practice and, if it does not hold, leads to biased estimates. In this paper, we develop the Time Series Deconfounder, a method that leverages the assignment of multiple treatments over time to enable the estimation of treatment effects in the presence of multi-cause hidden confounders. The Time Series Deconfounder uses a novel recurrent neural network architecture with multitask output to build a factor model over time and infer latent variables that render the assigned treatments conditionally independent; then, it performs causal inference using these latent variables that act as substitutes for the multi-cause unobserved confounders. We provide a theoretical analysis for obtaining unbiased causal effects of time-varying exposures using the Time Series Deconfounder. Using both simulated and real data we show the effectiveness of our method in deconfounding the estimation of treatment responses over time.


翻译:对治疗效果的估计是医学上普遍存在的一个问题。从纵向观察数据中估算治疗效果的现有方法假定没有隐藏的混淆者,这种假设在实践中是无法测试的,如果无法检测,则会导致偏颇的估计。在本文中,我们开发了时间序列断裂者,这一方法利用长期分配多种治疗的方法,以便在多原因隐蔽者出现的情况下估算治疗效果。时间序列断裂者使用一个具有多任务输出的新的经常性神经网络结构来建立因素模型,并推断出使指定治疗有条件独立的潜在变数;然后,它利用这些潜在变数来进行因果关系推断,这些变数可以替代未观察到的多原因的断裂者。我们提供了理论分析,以便利用时间序列断裂断裂Deconfounder获得时间变化照射的无偏见因果关系效果。我们利用模拟数据和真实数据来显示我们方法在逐渐解析对治疗反应的估计方面的有效性。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
75+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
270+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
已删除
将门创投
3+阅读 · 2017年11月3日
Arxiv
108+阅读 · 2020年2月5日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Learning to Importance Sample in Primary Sample Space
Arxiv
4+阅读 · 2018年5月24日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
已删除
将门创投
3+阅读 · 2017年11月3日
Top
微信扫码咨询专知VIP会员