This paper presents a novel method to control humanoid robot dynamic loco-manipulation with multiple contact modes via multi-contact Model Predictive Control (MPC) framework. The proposed framework includes a multi-contact dynamics model capable of capturing various contact modes in loco-manipulation, such as hand-object contact and foot-ground contacts. Our proposed dynamics model represents the object dynamics as an external force acting on the system, which simplifies the model and makes it feasible for solving the MPC problem. In numerical validations, our multi-contact MPC framework only needs contact timings of each task and desired states to give MPC the knowledge of changes in contact modes in the prediction horizons in loco-manipulation. The proposed framework can control the humanoid robot to complete multi-tasks dynamic loco-manipulation applications such as efficiently picking up and dropping off objects while turning and walking.
翻译:本文提出了一种通过多接触模型预测控制(MPC)框架实现多接触模态下的人形机器人动态步态操作的新方法。所提出的框架包括一个多接触动力学模型,能够捕捉各种步态操作中的各种接触模式,如手-物体接触和足地接触。我们提出的动力学模型将对象动态表示为作用于系统上的外部力,从而简化了模型,并使其可以求解MPC问题。在数字验证中,我们的多接触MPC框架仅需要每个任务的接触时机和期望状态,就可以让MPC了解步态操作中接触模态在预测时间内的变化。所提出的框架可控制人形机器人完成多种动态步态操作应用,如在转弯和行走时高效地拾取和放下物体。