Deep regression is an important problem with numerous applications. These range from computer vision tasks such as age estimation from photographs, to medical tasks such as ejection fraction estimation from echocardiograms for disease tracking. Semi-supervised approaches for deep regression are notably under-explored compared to classification and segmentation tasks, however. Unlike classification tasks, which rely on thresholding functions for generating class pseudo-labels, regression tasks use real number target predictions directly as pseudo-labels, making them more sensitive to prediction quality. In this work, we propose a novel approach to semi-supervised regression, namely Uncertainty-Consistent Variational Model Ensembling (UCVME), which improves training by generating high-quality pseudo-labels and uncertainty estimates for heteroscedastic regression. Given that aleatoric uncertainty is only dependent on input data by definition and should be equal for the same inputs, we present a novel uncertainty consistency loss for co-trained models. Our consistency loss significantly improves uncertainty estimates and allows higher quality pseudo-labels to be assigned greater importance under heteroscedastic regression. Furthermore, we introduce a novel variational model ensembling approach to reduce prediction noise and generate more robust pseudo-labels. We analytically show our method generates higher quality targets for unlabeled data and further improves training. Experiments show that our method outperforms state-of-the-art alternatives on different tasks and can be competitive with supervised methods that use full labels. Our code is available at https://github.com/xmed-lab/UCVME.


翻译:深度回归是许多应用中的一个重要问题。 从从照片年龄估计到医疗任务,例如从照片中进行年龄估计,到从回声心电图中为疾病跟踪提供弹出分数估计等医疗任务等, 与分类和分化任务相比,对深度回归的半监督方法显然探索不足。 与分类任务不同, 分类任务依靠临界功能生成类伪标签, 回归任务直接使用真实数字目标预测作为假标签, 使其对预测质量更加敏感。 在这项工作中, 我们提出对半监督回归的新办法, 即: 不可确定性(Consistentive Variational Model Endission) (UCUCVME), 这种方法通过生成高质量的伪标签和不确定性估计来改进培训。 我们采用的新的方法, 以更稳健的标签方法, 以更可靠的方式展示我们的数据。 我们的模型/ 变异性估算和变压方法, 以更可靠的方式展示我们的数据变现方法 。

0
下载
关闭预览

相关内容

专知会员服务
59+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月3日
Arxiv
21+阅读 · 2022年2月24日
Arxiv
30+阅读 · 2021年7月7日
Arxiv
12+阅读 · 2019年2月26日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员