Audio event has a hierarchical architecture in both time and frequency and can be grouped together to construct more abstract semantic audio classes. In this work, we develop a multiscale audio spectrogram Transformer (MAST) that employs hierarchical representation learning for efficient audio classification. Specifically, MAST employs one-dimensional (and two-dimensional) pooling operators along the time (and frequency domains) in different stages, and progressively reduces the number of tokens and increases the feature dimensions. MAST significantly outperforms AST~\cite{gong2021ast} by 22.2\%, 4.4\% and 4.7\% on Kinetics-Sounds, Epic-Kitchens-100 and VGGSound in terms of the top-1 accuracy without external training data. On the downloaded AudioSet dataset, which has over 20\% missing audios, MAST also achieves slightly better accuracy than AST. In addition, MAST is 5x more efficient in terms of multiply-accumulates (MACs) with 42\% reduction in the number of parameters compared to AST. Through clustering metrics and visualizations, we demonstrate that the proposed MAST can learn semantically more separable feature representations from audio signals.


翻译:音频事件在时间和频率上都具有分层结构,并且可以分组在一起构建更抽象的语义音频类别。在本文中,我们开发了一种多尺度音频频谱变换器(MAST),采用分层表示学习进行高效音频分类。具体而言,MAST 在不同阶段沿时间(和频率)域采用一维(和二维)池操作,并逐渐减少代币数量和增加特征维度。MAST 的表现显著优于 AST~\cite{gong2021ast},在没有外部训练数据的情况下,在 Kinetics-Sounds、Epic-Kitchens-100 和 VGGSound 上的 top-1 准确率分别提高了22.2\%、4.4\%和4.7\%。在下载的 AudioSet 数据集上,其有超过20\% 的缺失音频,MAST 也比 AST 稍微提高了准确性。此外,与 AST 相比,MAST 的乘积累加(MACs)效率提高了5 倍,参数数量减少了42\%。通过聚类指标和可视化,我们证明了所提出的 MAST 可以从音频信号中学习到更具语义分离的特征表示。

0
下载
关闭预览

相关内容

【CVPR2022】基于知识蒸馏的高效预训练
专知会员服务
32+阅读 · 2022年4月23日
专知会员服务
44+阅读 · 2020年12月18日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
50+阅读 · 2020年2月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
7+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
11+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
2+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
13+阅读 · 2022年1月20日
Arxiv
31+阅读 · 2021年6月30日
Arxiv
19+阅读 · 2020年12月23日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
7+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
11+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
2+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员