Knowledge graphs (KGs) have become an effective paradigm for managing real-world facts, which are not only complex but also dynamically evolve over time. The temporal validity of facts often serves as a strong clue in downstream link prediction tasks, which predicts a missing element in a fact. Traditional link prediction techniques on temporal KGs either consider a sequence of temporal snapshots of KGs with an ad-hoc defined time interval or expand a temporal fact over its validity period under a predefined time granularity; these approaches not only suffer from the sensitivity of the selection of time interval/granularity, but also face the computational challenges when handling facts with long (even infinite) validity. Although the recent hyper-relational KGs represent the temporal validity of a fact as qualifiers describing the fact, it is still suboptimal due to its ignorance of the infinite validity of some facts and the insufficient information encoded from the qualifiers about the temporal validity. Against this background, we propose VITA, a $\underline{V}$ersatile t$\underline{I}$me represen$\underline{TA}$tion learning method for temporal hyper-relational knowledge graphs. We first propose a versatile time representation that can flexibly accommodate all four types of temporal validity of facts (i.e., since, until, period, time-invariant), and then design VITA to effectively learn the time information in both aspects of time value and timespan to boost the link prediction performance. We conduct a thorough evaluation of VITA compared to a sizable collection of baselines on real-world KG datasets. Results show that VITA outperforms the best-performing baselines in various link prediction tasks (predicting missing entities, relations, time, and other numeric literals) by up to 75.3%. Ablation studies and a case study also support our key design choices.


翻译:知识图谱(KG)已成为管理现实世界事实的有效范式,这些事实不仅复杂,而且会随时间动态演化。事实的时间有效性常为下游链接预测任务(即预测事实中缺失的元素)提供重要线索。传统时序知识图谱上的链接预测技术,要么考虑以临时定义的时间间隔对知识图谱进行时序快照序列建模,要么在预定义时间粒度下将时序事实在其有效期内展开;这些方法不仅对时间间隔/粒度的选择敏感,而且在处理具有长(甚至无限)有效期的事实时面临计算挑战。尽管近期提出的超关系知识图谱将事实的时间有效性表示为描述该事实的限定符,但由于其忽略了某些事实的无限有效性,且从限定符中编码出的时间有效性信息不足,该方法仍非最优。在此背景下,我们提出VITA,一种面向时序超关系知识图谱的通用时间表示学习方法。我们首先提出一种通用时间表示,能够灵活适应事实的四种时间有效性类型(即起始时间、截止时间、时间段、时间不变),进而设计VITA方法,从时间值和时间跨度两方面有效学习时间信息,以提升链接预测性能。我们在真实世界知识图谱数据集上,将VITA与大量基线方法进行了全面对比评估。结果表明,在各种链接预测任务(预测缺失实体、关系、时间及其他数值字面量)中,VITA的性能最高可超越最佳基线方法75.3%。消融研究与案例研究也验证了我们关键设计选择的有效性。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员