In this paper, we propose a novel framework for designing a fast convergent multi-agent reinforcement learning (MARL)-based medium access control (MAC) protocol operating in a single cell scenario. The user equipments (UEs) are cast as learning agents that need to learn a proper signaling policy to coordinate the transmission of protocol data units (PDUs) to the base station (BS) over shared radio resources. In many MARL tasks, the conventional centralized training with decentralized execution (CTDE) is adopted, where each agent receives the same global extrinsic reward from the environment. However, this approach involves a long training time. To overcome this drawback, we adopt the concept of learning a per-agent intrinsic reward, in which each agent learns a different intrinsic reward signal based solely on its individual behavior. Moreover, in order to provide an intrinsic reward function that takes into account the long-term training history, we represent it as a long shortterm memory (LSTM) network. As a result, each agent updates its policy network considering both the extrinsic reward, which characterizes the cooperative task, and the intrinsic reward that reflects local dynamics. The proposed learning framework yields a faster convergence and higher transmission performance compared to the baselines. Simulation results show that the proposed learning solution yields 75% improvement in convergence speed compared to the most performing baseline.


翻译:在本文中,我们提出了设计快速聚合多试剂强化学习(MARL)中型出入控制(MAC)协议的新框架。用户设备(UES)是作为学习者而推出的,他们需要学习适当的信号政策,以协调协议数据单位通过共享的无线电资源向基地站的传输。在许多MARL任务中,采用分散执行(CTDE)的常规集中培训,每个代理机构都从环境得到同样的全球极限奖励。然而,这一方法需要很长的培训时间。为了克服这一缺陷,我们采用了学习每个代理机构内在奖赏的概念,其中每个代理机构只根据其个人行为学习不同的内在奖赏信号。此外,为了提供考虑到长期培训历史的内在奖赏功能,我们把它当作一个长期的短期记忆(LSTM)网络。因此,每个代理机构更新其政策网络,既考虑作为合作性任务的特征的极端奖赏,也考虑反映反映地方趋同速度的内在奖赏。拟议的学习基准比75 学习基准显示学习成绩的更快的升级,比比学习基准 学习基准显示Simal 基准显示学习结果的更快的改进。</s>

0
下载
关闭预览

相关内容

专知会员服务
59+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
169+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
14+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2023年1月19日
Arxiv
20+阅读 · 2022年11月8日
Arxiv
64+阅读 · 2022年4月13日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
14+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员