This paper investigates task-oriented communication for multi-device cooperative edge inference, where a group of distributed low-end edge devices transmit the extracted features of local samples to a powerful edge server for inference. While cooperative edge inference can overcome the limited sensing capability of a single device, it substantially increases the communication overhead and may incur excessive latency. To enable low-latency cooperative inference, we propose a learning-based communication scheme that optimizes local feature extraction and distributed feature encoding in a task-oriented manner, i.e., to remove data redundancy and transmit information that is essential for the downstream inference task rather than reconstructing the data samples at the edge server. Specifically, we leverage an information bottleneck (IB) principle to extract the task-relevant feature at each edge device and adopt a distributed information bottleneck (DIB) framework to formalize a single-letter characterization of the optimal rate-relevance tradeoff for distributed feature encoding. To admit flexible control of the communication overhead, we extend the DIB framework to a distributed deterministic information bottleneck (DDIB) objective that explicitly incorporates the representational costs of the encoded features. As the IB-based objectives are computationally prohibitive for high-dimensional data, we adopt variational approximations to make the optimization problems tractable. To compensate the potential performance loss due to the variational approximations, we also develop a selective retransmission (SR) mechanism to identify the redundancy in the encoded features of multiple edge devices to attain additional communication overhead reduction. Extensive experiments evidence that the proposed task-oriented communication scheme achieves a better rate-relevance tradeoff than baseline methods.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员