Cost-effective asset management is an area of interest across several industries. Specifically, this paper develops a deep reinforcement learning (DRL) solution to automatically determine an optimal rehabilitation policy for continuously deteriorating water pipes. We approach the problem of rehabilitation planning in an online and offline DRL setting. In online DRL, the agent interacts with a simulated environment of multiple pipes with distinct lengths, materials, and failure rate characteristics. We train the agent using deep Q-learning (DQN) to learn an optimal policy with minimal average costs and reduced failure probability. In offline learning, the agent uses static data, e.g., DQN replay data, to learn an optimal policy via a conservative Q-learning algorithm without further interactions with the environment. We demonstrate that DRL-based policies improve over standard preventive, corrective, and greedy planning alternatives. Additionally, learning from the fixed DQN replay dataset in an offline setting further improves the performance. The results warrant that the existing deterioration profiles of water pipes consisting of large and diverse states and action trajectories provide a valuable avenue to learn rehabilitation policies in the offline setting, which can be further fine-tuned using the simulator.


翻译:成本效益的资产管理是多个行业感兴趣的领域。特别地,本文开发了一种基于深度强化学习(DRL)的解决方案,以自动确定连续恶化的水管的最佳修复策略。我们在在线和离线DRL设置中处理修复计划的问题。在在线DRL中,代理与具有不同长度、材料和故障率特征的多个管道的模拟环境进行交互。我们使用深度Q学习(DQN)训练代理程序,以学习具有最小平均成本和降低故障概率的最佳策略。在离线学习中,代理使用静态数据,例如DQN重放数据,通过保守的Q学习算法学习最佳策略,而无需进一步与环境交互。我们证明,基于DRL的策略比标准的预防性、纠正性和贪婪性计划替代方案更好。此外,在离线设置中从固定的DQN重放数据集学习进一步提高了性能。结果表明,由大且多样化的状态和行动轨迹组成的水管的现有恶化模式为学习离线修复策略提供了宝贵的途径,这可以进一步使用模拟器进行微调。

0
下载
关闭预览

相关内容

JCIM丨DRlinker:深度强化学习优化片段连接设计
专知会员服务
6+阅读 · 2022年12月9日
【2022新书】深度强化学习基础: Python的理论与实践
专知会员服务
134+阅读 · 2022年11月18日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
115+阅读 · 2022年4月21日
深度强化学习策略梯度教程,53页ppt
专知会员服务
176+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
17种深度强化学习算法用Pytorch实现
新智元
30+阅读 · 2019年9月16日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
44+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月31日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关资讯
17种深度强化学习算法用Pytorch实现
新智元
30+阅读 · 2019年9月16日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
44+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员