We examine the effect of bounding the diameter for well-studied variants of the Colouring problem. A colouring is acyclic, star, or injective if any two colour classes induce a forest, star forest or disjoint union of vertices and edges, respectively. The corresponding decision problems are Acyclic Colouring, Star Colouring and Injective Colouring. The last problem is also known as $L(1,1)$-Labelling and we also consider the framework of $L(a,b)$-Labelling. We prove a number of (almost-)complete complexity classifications. In particular, we show that for graphs of diameter at most $d$, Acyclic $3$-Colouring is polynomial-time solvable if $d\leq 2$ but NP-complete if $d\geq 5$, and Star $3$-Colouring is polynomial-time solvable if $d\leq 3$ but NP-complete for $d\geq 8$. As far as we are aware, Star $3$-Colouring is the first problem that exhibits a complexity jump for some $d\geq 3$. Our third main result is that $L(1,2)$-Labelling is NP-complete for graphs of diameter $2$; we relate the latter problem to a special case of Hamiltonian Path.
翻译:我们检查了对受广泛研究的色彩问题变体的直径的界限。 彩色是一种循环、 恒星或预射的组合, 如果任何两个彩色等级分别导致森林、 恒星森林或脊椎和边缘的脱节结合。 相应的决定问题是环色彩色、 星色和定向彩色。 最后一个问题也被称为$L(1, 1美元) 美元- 彩色, 我们还考虑的是 $L( a, b) $- labelling 的框架。 我们证明了一些( 近乎的) 复杂程度分类。 特别是, 我们显示, 对于直径的图表, 最多是$( $- 明星森林) 3美元 3美元- 彩色是多元的, 如果$( g) 5 美元, 则NP 3 美元- 彩色是多时的, 我们的直径直径( $8美元) 。 我们所知道的是, 3- 彩色的直径( 3美元) 的直径( 美元) 的直径( 美元) 直径( 美元) 直径( 美元) 直径) 直径( 美元) 直径( ) ) 直径( ) 是我们的直径) 直径) 问题, 3- 直径( 3- 直径( ) 问题是, 美元) 直径( 美元) 问题, 。