Dependent Dirichlet processes (DDP) have been widely applied to model data from distributions over collections of measures which are correlated in some way. On the other hand, in recent years, increasing research efforts in machine learning and data mining have been dedicated to dealing with data involving interactions from two or more factors. However, few researchers have addressed the heterogeneous relationship in data brought by modulation of multiple factors using techniques of DDP. In this paper, we propose a novel technique, MultiLinear Dirichlet Processes (MLDP), to constructing DDPs by combining DP with a state-of-the-art factor analysis technique, multilinear factor analyzers (MLFA). We have evaluated MLDP on real-word data sets for different applications and have achieved state-of-the-art performance.


翻译:另一方面,近年来,在机器学习和数据挖掘方面越来越多的研究工作致力于处理涉及两个或两个以上因素相互作用的数据,然而,研究者很少讨论利用DDP技术调控多种因素带来的数据差异关系。在本文中,我们提议一种新颖技术,即多利那脱脂工艺(MLDP),即多利那脱脂工艺(MLDP),通过将DP与最先进的要素分析技术、多线性要素分析器(MLFA)相结合来构建DDP(DDP),我们对用于不同应用的真话数据集的MLDP进行了评价,并取得了最先进的性能。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
专知会员服务
16+阅读 · 2021年5月21日
专知会员服务
101+阅读 · 2021年3月20日
最新《深度学习理论》笔记,68页pdf
专知会员服务
50+阅读 · 2021年2月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Arxiv
0+阅读 · 2021年8月13日
A Survey on Data Augmentation for Text Classification
Arxiv
8+阅读 · 2021年6月1日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关VIP内容
专知会员服务
16+阅读 · 2021年5月21日
专知会员服务
101+阅读 · 2021年3月20日
最新《深度学习理论》笔记,68页pdf
专知会员服务
50+阅读 · 2021年2月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员