Iterative filtering methods were introduced around 2010 to improve definitions and measurements of structural features in signal processing. Like many applied techniques, they present considerable challenges for mathematicians to theorize their effectiveness and limitations in commercial and scientific usages. In this paper we recast iterative filtering methods in a mathematical abstraction more conducive to their understanding and applications. We also introduce a new visualization of simultaneous local frequencies and amplitudes. By combining a theoretical and practical exposition, we hope to stimulate efforts to understand better these methods. Our approach acknowledges the influence of Ciprian Foia\c{s}, who was passionate about pure, applied, and applications of mathematics.


翻译:2010年前后,为改进信号处理结构特征的定义和测量,引入了循环过滤方法,以改进信号处理中结构特征的定义和测量,与许多应用技术一样,这些方法给数学家提出了相当大的挑战,使他们在商业和科学用途方面如何解释其有效性和局限性。在本文中,我们用更有利于其理解和应用的数学抽象学重新塑造了迭代过滤方法。我们还引入了同步本地频率和振幅的新视觉化。通过将理论和实践的论述结合起来,我们希望激发人们努力更好地了解这些方法。我们的方法承认热衷于纯洁、应用和应用数学的Ciprian Foia\c{s}的影响力。

0
下载
关闭预览

相关内容

【AAAI2021】记忆门控循环网络
专知会员服务
48+阅读 · 2020年12月28日
专知会员服务
53+阅读 · 2019年12月22日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
150+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Random and quasi-random designs in group testing
Arxiv
0+阅读 · 2021年1月15日
Financial Time Series Representation Learning
Arxiv
10+阅读 · 2020年3月27日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
VIP会员
相关VIP内容
【AAAI2021】记忆门控循环网络
专知会员服务
48+阅读 · 2020年12月28日
专知会员服务
53+阅读 · 2019年12月22日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
150+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员