Quantum computing (QC) has received a lot of attention according to its light training parameter numbers and computational speeds by qubits. Moreover, various researchers have tried to enable quantum machine learning (QML) using QC, where there are also multifarious efforts to use QC to implement quantum multi-agent reinforcement learning (QMARL). Existing classical multi-agent reinforcement learning (MARL) using neural network features non-stationarity and uncertain properties due to its large number of parameters. Therefore, this paper presents a visual simulation software framework for a novel QMARL algorithm to control autonomous multi-drone systems to take advantage of QC. Our proposed QMARL framework accomplishes reasonable reward convergence and service quality performance with fewer trainable parameters than the classical MARL. Furthermore, QMARL shows more stable training results than existing MARL algorithms. Lastly, our proposed visual simulation software allows us to analyze the agents' training process and results.
翻译:量子计算(QC)因其光培训参数数和qubits计算速度而得到很多关注。此外,各种研究人员还试图利用QC使量子机器学习(QML),在QC中也作出多种努力,利用QC实施量子多剂强化学习(QMARL)。利用现有的古典多剂强化学习(MARL),使用神经网络的特征是非静态的和不确定的特性,因此,本文为新型的QMARL算法提供了一个视觉模拟软件框架,以控制自主的多雷场系统,利用QC。我们提议的QMARL框架实现了合理的奖励趋同和服务质量业绩,其培训参数比古典MARL少。此外,QMARL显示比现有的MAR算法更稳定的培训结果。最后,我们提议的视觉模拟软件使我们能够分析代理人的培训过程和结果。