We study quantum speedups in quantum machine learning (QML) by analyzing the quantum singular value transformation (QSVT) framework. QSVT, introduced by [GSLW, STOC'19, arXiv:1806.01838], unifies all major types of quantum speedup; in particular, a wide variety of QML proposals are applications of QSVT on low-rank classical data. We challenge these proposals by providing a classical algorithm that matches the performance of QSVT in this regime up to a small polynomial overhead. We show that, given a matrix $A \in \mathbb{C}^{m\times n}$, a vector $b \in \mathbb{C}^{n}$, a bounded degree-$d$ polynomial $p$, and linear-time pre-processing, we can output a description of a vector $v$ such that $\|v - p(A) b\| \leq \varepsilon\|b\|$ in $\widetilde{\mathcal{O}}(d^{11} \|A\|_{\mathrm{F}}^4 / (\varepsilon^2 \|A\|^4 ))$ time. This improves upon the best known classical algorithm [CGLLTW, STOC'20, arXiv:1910.06151], which requires $\widetilde{\mathcal{O}}(d^{22} \|A\|_{\mathrm{F}}^6 /(\varepsilon^6 \|A\|^6 ) )$ time, and narrows the gap with QSVT, which, after linear-time pre-processing to load input into a quantum-accessible memory, can estimate the magnitude of an entry $p(A)b$ to $\varepsilon\|b\|$ error in $\widetilde{\mathcal{O}}(d\|A\|_{\mathrm{F}}/(\varepsilon \|A\|))$ time. Our key insight is to combine the Clenshaw recurrence, an iterative method for computing matrix polynomials, with sketching techniques to simulate QSVT classically. We introduce several new classical techniques in this work, including (a) a non-oblivious matrix sketch for approximately preserving bi-linear forms, (b) a new stability analysis for the Clenshaw recurrence, and (c) a new technique to bound arithmetic progressions of the coefficients appearing in the Chebyshev series expansion of bounded functions, each of which may be of independent interest.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年9月20日
Learning Implicit Fields for Generative Shape Modeling
Arxiv
11+阅读 · 2018年12月6日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员