In this paper, we introduce a variation of the group testing problem where each test is specified by an ordered subset of items and returns the first defective item in the specified order or returns null if there are no defectives. We refer to this as cascaded group testing and the goal is to identify a small set of $K$ defective items amongst a collection of size $N$, using as few tests as possible for perfect recovery. For the adaptive testing regime, we show that a simple scheme can find all defective items in at most $K$ tests, which is optimal. For the non-adaptive setting, we first come up with a necessary and sufficient condition for any collection of tests to be feasible for recovering all the defectives. Using this, we show that any feasible non-adaptive strategy requires at least $\Omega(K^2)$ tests. In terms of achievability, it is easy to show the existence of a feasible collection of $O(K^2 \log (N/K))$ tests. We show via carefully constructed explicit designs that one can do significantly better for constant $K$. While the cases $K = 1, 2$ are straightforward, the case $K=3$ is already non-trivial and we come up with an iterative design that is asymptotically optimal and requires $\Theta(\log \log N)$ tests. Note that this is in contrast to standard binary group testing, where at least $\Omega(\log N)$ tests are required. For constant $K \ge 3$, our iterative design requires only poly$(\log \log N)$ tests.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Group一直是研究计算机支持的合作工作、人机交互、计算机支持的协作学习和社会技术研究的主要场所。该会议将社会科学、计算机科学、工程、设计、价值观以及其他与小组工作相关的多个不同主题的工作结合起来,并进行了广泛的概念化。官网链接:https://group.acm.org/conferences/group20/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年11月6日
Arxiv
0+阅读 · 2024年11月3日
Arxiv
0+阅读 · 2024年11月1日
Arxiv
29+阅读 · 2023年1月12日
Arxiv
12+阅读 · 2020年12月10日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2024年11月6日
Arxiv
0+阅读 · 2024年11月3日
Arxiv
0+阅读 · 2024年11月1日
Arxiv
29+阅读 · 2023年1月12日
Arxiv
12+阅读 · 2020年12月10日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员