Network modeling is a fundamental tool in network research, design, and operation. Arguably the most popular method for modeling is Queuing Theory (QT). Its main limitation is that it imposes strong assumptions on the packet arrival process, which typically do not hold in real networks. In the field of Deep Learning, Graph Neural Networks (GNN) have emerged as a new technique to build data-driven models that can learn complex and non-linear behavior. In this paper, we present \emph{RouteNet-Erlang}, a pioneering GNN architecture designed to model computer networks. RouteNet-Erlang supports complex traffic models, multi-queue scheduling policies, routing policies and can provide accurate estimates in networks not seen in the training phase. We benchmark RouteNet-Erlang against a state-of-the-art QT model, and our results show that it outperforms QT in all the network scenarios.
翻译:网络建模是网络研究、设计和操作的一个基本工具。 可以说,最受欢迎的建模方法是Queing理论(QT),其主要局限在于它对通常不存在于真实网络中的包运到过程提出强有力的假设。 在深层学习领域,图形神经网络(GNN)已经成为一种新技术,用来建立数据驱动模型,从而学习复杂和非线性行为。 在本文中,我们介绍了一个创新的GNN架构,即计算机网络建模的GNN架构。 路线Net-ELang支持复杂的交通模式、多队排期政策、路由政策,并能够提供在培训阶段未见的网络的准确估计。 我们用最新科技模型作为WaterNet-Erlanng的基准,我们的结果显示,它在所有网络情景中都超越了QT。