First-order hydrostatic reconstruction (HR) schemes for shallow water equations are highly diffusive whereas high-order schemes can produce entropy-violating solutions. Our goal is to develop a flux correction with maximum antidiffusive fluxes to obtain entropy solutions of shallow water equations with variable bottom topography. For this purpose, we consider a hybrid explicit HR scheme whose flux is a convex combination of first-order Rusanov flux and high-order flux. The conditions under which the explicit first-order HR scheme for shallow water equations satisfies the fully discrete entropy inequality have been studied. The flux limiters for the hybrid scheme are calculated from a corresponding optimization problem. Constraints for the optimization problem consist of inequalities that are valid for the first-order HR scheme and applied to the hybrid scheme. We apply the discrete cell entropy inequality with the proper numerical entropy flux to single out a physically relevant solution to the shallow water equations. A nontrivial approximate solution of the optimization problem yields expressions to compute the required flux limiters. Numerical results of testing various HR schemes on different benchmarks are presented.
翻译:暂无翻译