We study push-based sampling and transmission policies for a status update system consisting of a general finite-state continuous-time Markov chain (CTMC) information source with known dynamics, with the goal of minimizing the average age of incorrect information (AoII). The problem setting we investigate involves an exponentially distributed delay channel for transmissions and a constraint on the average sampling rate. We first show that the optimum sampling and transmission policy is a 'multi-threshold policy', where the thresholds depend on both the estimation value and the state of the original process, and sampling and transmission need to be initiated when the instantaneous AoII exceeds the corresponding threshold, called the estimation- and state-aware transmission (ESAT) policy. Subsequently, we formulate the problem of finding the thresholds as a constrained semi-Markov decision process (CSMDP) and the Lagrangian approach. Additionally, we propose two lower complexity sub-optimum policies, namely the estimation-aware transmission (EAT) policy, and the single-threshold (ST) policy, for which it is possible to obtain these thresholds for CTMCs with relatively larger number of states. The underlying CSMDP formulation relies on the 'multi-regime phase-type' (MRPH) distribution which is a generalization of the well-known phase-type distribution, which allows us to obtain the distribution of time until absorption in a CTMC whose transition rates change with respect to time in a piece-wise manner. The effectiveness of the proposed ESAT, EAT and ST sampling and transmission policies are shown through numerical examples, along with comparisons with a baseline scheme that transmits packets according to a Poisson process in out-of-sync periods.


翻译:暂无翻译

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员